
Package ‘parsnip’
July 20, 2021

Title A Common API to Modeling and Analysis Functions

Version 0.1.7

Maintainer Max Kuhn <max@rstudio.com>

Description A common interface is provided to allow users to specify a
model without having to remember the different argument names across
different functions or computational engines (e.g. 'R', 'Spark',
'Stan', etc).

License MIT + file LICENSE

URL https://parsnip.tidymodels.org, https://github.com/tidymodels/parsnip

BugReports https://github.com/tidymodels/parsnip/issues

Depends R (¿= 2.10)

Imports dplyr (¿= 0.8.0.1),
generics (¿= 0.1.0),
globals,
glue,
hardhat (¿= 0.1.5.9000),
lifecycle,
magrittr,
prettyunits,
purrr,
rlang (¿= 0.3.1),
stats,
tibble (¿= 2.1.1),
tidyr (¿= 1.0.0),
utils,
vctrs (¿= 0.2.0)

Suggests C50,
covr,
dials,
earth,
keras,
kernlab,
kknn,
knitr,
LiblineaR,
MASS,
Matrix,

1

https://parsnip.tidymodels.org
https://github.com/tidymodels/parsnip
https://github.com/tidymodels/parsnip/issues

2 R topics documented:

mgcv,
modeldata,
nlme,
randomForest,
ranger (¿= 0.12.0),
rmarkdown,
rpart,
sparklyr (¿= 1.0.0),
survival,
testthat,
xgboost

VignetteBuilder knitr

ByteCompile true

Config/Needs/website C50, earth, glmnet, keras, kernlab, kknn, LiblineaR,
mgcv, nnet, parsnip, randomForest, ranger, rpart, rstanarm, tidymodels,
tidyverse/tidytemplate, xgboost

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1.9001

R topics documented:

add rowindex . 3
augment.model fit . 3
boost tree . 4
control parsnip . 6
contr one hot . 7
decision tree . 8
descriptors . 10
extract-parsnip . 11
fit.model spec . 12
gen additive mod . 14
glance.model fit . 15
linear reg . 16
logistic reg . 17
mars . 18
maybe matrix . 19
min cols . 20
mlp . 21
model fit . 22
model spec . 23
multinom reg . 25
multi predict . 26
nearest neighbor . 27
null model . 28
parsnip addin . 29
rand forest . 29
repair call . 31
req pkgs . 32

add rowindex 3

set args . 33
set engine . 33
show engines . 34
svm linear . 35
svm poly . 36
svm rbf . 37
tidy.model fit . 38
translate . 39
update.boost tree . 40
varying args.model spec . 45

add rowindex Add a column of row numbers to a data frame

Description

Add a column of row numbers to a data frame

Usage

add_rowindex(x)

Arguments

x A data frame

Value

The same data frame with a column of 1-based integers named .row.

Examples

mtcars %>% add_rowindex()

augment.model fit Augment data with predictions

Description

augment() will add column(s) for predictions to the given data.

Usage

S3 method for class 'model_fit'
augment(x, new_data, ...)

Arguments

x A model fit object produced by fit.model spec() or fit xy.model spec()
.

new data A data frame or matrix.

... Not currently used.

4 boost tree

Details

For regression models, a .pred column is added. If x was created using fit.model spec()
and new data contains the outcome column, a .resid column is also added.

For classification models, the results can include a column called .pred class as well as
class probability columns named .pred {level}. This depends on what type of prediction
types are available for the model.

Examples

car_trn <- mtcars[11:32,]
car_tst <- mtcars[1:10,]

reg_form <-
linear_reg() %>%
set_engine("lm") %>%
fit(mpg ˜ ., data = car_trn)

reg_xy <-
linear_reg() %>%
set_engine("lm") %>%
fit_xy(car_trn[, -1], car_trn$mpg)

augment(reg_form, car_tst)
augment(reg_form, car_tst[, -1])

augment(reg_xy, car_tst)
augment(reg_xy, car_tst[, -1])

--

data(two_class_dat, package = "modeldata")
cls_trn <- two_class_dat[-(1:10),]
cls_tst <- two_class_dat[1:10 ,]

cls_form <-
logistic_reg() %>%
set_engine("glm") %>%
fit(Class ˜ ., data = cls_trn)

cls_xy <-
logistic_reg() %>%
set_engine("glm") %>%
fit_xy(cls_trn[, -3],
cls_trn$Class)

augment(cls_form, cls_tst)
augment(cls_form, cls_tst[, -3])

augment(cls_xy, cls_tst)
augment(cls_xy, cls_tst[, -3])

boost tree Boosted trees

boost tree 5

Description

boost tree() defines a model that creates a series of decision trees forming an ensemble.
Each tree depends on the results of previous trees. All trees in the ensemble are combined
to produce a final prediction.

There are different ways to fit this model. See the engine-specific pages for more details:

� xgboost (default)

� C5.0

� spark

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

boost_tree(
mode = "unknown",
engine = "xgboost",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

mtry A number for the number (or proportion) of predictors that will be ran-
domly sampled at each split when creating the tree models (specific en-
gines only)

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that is
required for the node to be split further.

tree depth An integer for the maximum depth of the tree (i.e. number of splits)
(specific engines only).

learn rate A number for the rate at which the boosting algorithm adapts from
iteration-to-iteration (specific engines only).

loss reduction A number for the reduction in the loss function required to split further
(specific engines only).

sample size A number for the number (or proportion) of data that is exposed to the
fitting routine. For xgboost, the sampling is done at each iteration while
C5.0 samples once during training.

stop iter The number of iterations without improvement before stopping (specific
engines only).

https://www.tidymodels.org/

6 control parsnip

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), xgboost engine details, C5.0 engine details,
spark engine details, xgb train(), C5.0 train()

Examples

show_engines("boost_tree")

boost_tree(mode = "classification", trees = 20)

control parsnip Control the fit function

Description

Options can be passed to the fit.model spec() function that control the output and com-
putations

Usage

control_parsnip(verbosity = 1L, catch = FALSE)

fit_control(verbosity = 1L, catch = FALSE)

Arguments

verbosity An integer where a value of zero indicates that no messages or output
should be shown when packages are loaded or when the model is fit. A
value of 1 means that package loading is quiet but model fits can produce
output to the screen (depending on if they contain their own verbose-
type argument). A value of 2 or more indicates that any output should
be seen.

catch A logical where a value of TRUE will evaluate the model inside of try(,silent
= TRUE). If the model fails, an object is still returned (without an error)
that inherits the class ”try-error”.

Details

fit control() is deprecated in favor of control parsnip().

https://www.tidymodels.org
https://www.tmwr.org/

contr one hot 7

Value

An S3 object with class ”fit control” that is a named list with the results of the function
call

contr one hot Contrast function for one-hot encodings

Description

This contrast function produces a model matrix with indicator columns for each level of
each factor.

Usage

contr_one_hot(n, contrasts = TRUE, sparse = FALSE)

Arguments

n A vector of character factor levels or the number of unique levels.

contrasts This argument is for backwards compatibility and only the default of TRUE
is supported.

sparse This argument is for backwards compatibility and only the default of
FALSE is supported.

Details

By default, model.matrix() generates binary indicator variables for factor predictors. When
the formula does not remove an intercept, an incomplete set of indicators are created; no
indicator is made for the first level of the factor.

For example, species and island both have three levels but model.matrix() creates two
indicator variables for each:

library(dplyr)
library(modeldata)
data(penguins)

levels(penguins$species)

[1] "Adelie" "Chinstrap" "Gentoo"

levels(penguins$island)

[1] "Biscoe" "Dream" "Torgersen"

model.matrix(˜ species + island, data = penguins) %>%
colnames()

[1] "(Intercept)" "speciesChinstrap" "speciesGentoo" "islandDream"
[5] "islandTorgersen"

8 decision tree

For a formula with no intercept, the first factor is expanded to indicators for all factor
levels but all other factors are expanded to all but one (as above):

model.matrix(˜ 0 + species + island, data = penguins) %>%
colnames()

[1] "speciesAdelie" "speciesChinstrap" "speciesGentoo" "islandDream"
[5] "islandTorgersen"

For inference, this hybrid encoding can be problematic.

To generate all indicators, use this contrast:

Switch out the contrast method
old_contr <- options("contrasts")$contrasts
new_contr <- old_contr
new_contr["unordered"] <- "contr_one_hot"
options(contrasts = new_contr)

model.matrix(˜ species + island, data = penguins) %>%
colnames()

[1] "(Intercept)" "speciesAdelie" "speciesChinstrap" "speciesGentoo"
[5] "islandBiscoe" "islandDream" "islandTorgersen"

options(contrasts = old_contr)

Removing the intercept here does not affect the factor encodings.

Value

A diagonal matrix that is n-by-n.

decision tree Decision trees

Description

decision tree() defines a model as a set of if/then statements that creates a tree-based
structure.

There are different ways to fit this model. See the engine-specific pages for more details:

� rpart (default)

� C5.0

� spark

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org/

decision tree 9

Usage

decision_tree(
mode = "unknown",
engine = "rpart",
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

cost complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used
by CART models (specific engines only).

tree depth An integer for maximum depth of the tree.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), rpart engine details, C5.0 engine details,
spark engine details

Examples

show_engines("decision_tree")

decision_tree(mode = "classification", tree_depth = 5)

https://www.tidymodels.org
https://www.tmwr.org/

10 descriptors

descriptors Data Set Characteristics Available when Fitting Models

Description

When using the fit() functions there are some variables that will be available for use in
arguments. For example, if the user would like to choose an argument value based on the
current number of rows in a data set, the .obs() function can be used. See Details below.

Usage

.cols()

.preds()

.obs()

.lvls()

.facts()

.x()

.y()

.dat()

Details

Existing functions:

� .obs(): The current number of rows in the data set.

� .preds(): The number of columns in the data set that is associated with the predictors
prior to dummy variable creation.

� .cols(): The number of predictor columns available after dummy variables are created
(if any).

� .facts(): The number of factor predictors in the data set.

� .lvls(): If the outcome is a factor, this is a table with the counts for each level (and
NA otherwise).

� .x(): The predictors returned in the format given. Either a data frame or a matrix.

� .y(): The known outcomes returned in the format given. Either a vector, matrix, or
data frame.

� .dat(): A data frame containing all of the predictors and the outcomes. If fit xy()
was used, the outcomes are attached as the column, ..y.

For example, if you use the model formula circumference ˜ . with the built-in Orange data,
the values would be

extract-parsnip 11

.preds() = 2 (the 2 remaining columns in `Orange`)

.cols() = 5 (1 numeric column + 4 from Tree dummy variables)

.obs() = 35

.lvls() = NA (no factor outcome)

.facts() = 1 (the Tree predictor)

.y() = <vector> (circumference as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

If the formula Tree ˜ . were used:

.preds() = 2 (the 2 numeric columns in `Orange`)

.cols() = 2 (same)

.obs() = 35

.lvls() = c("1" = 7, "2" = 7, "3" = 7, "4" = 7, "5" = 7)

.facts() = 0

.y() = <vector> (Tree as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

To use these in a model fit, pass them to a model specification. The evaluation is delayed
until the time when the model is run via fit() (and the variables listed above are available).
For example:

library(modeldata)
data("lending_club")

rand_forest(mode = "classification", mtry = .cols() - 2)

When no descriptors are found, the computation of the descriptor values is not executed.

extract-parsnip Extract elements of a parsnip model object

Description

These functions extract various elements from a parsnip object. If they do not exist yet,
an error is thrown.

� extract spec parsnip() returns the parsnip model specification.

� extract fit engine() returns the engine specific fit embedded within a parsnip model
fit. For example, when using linear reg() with the "lm" engine, this returns the
underlying lm object.

Usage

S3 method for class 'model_fit'
extract_spec_parsnip(x, ...)

S3 method for class 'model_fit'
extract_fit_engine(x, ...)

12 fit.model spec

Arguments

x A parsnip model fit object.

... Not currently used.

Details

Extracting the underlying engine fit can be helpful for describing the model (via print(),
summary(), plot(), etc.) or for variable importance/explainers.

However, users should not invoke the predict() method on an extracted model. There may
be preprocessing operations that parsnip has executed on the data prior to giving it to the
model. Bypassing these can lead to errors or silently generating incorrect predictions.

Good:

parsnip_fit %>% predict(new_data)

Bad:

parsnip_fit %>% extract_fit_engine() %>% predict(new_data)

Value

The extracted value from the parsnip object, x, as described in the description section.

Examples

lm_spec <- linear_reg() %>% set_engine("lm")
lm_fit <- fit(lm_spec, mpg ˜ ., data = mtcars)

lm_spec
extract_spec_parsnip(lm_fit)

extract_fit_engine(lm_fit)
lm(mpg ˜ ., data = mtcars)

fit.model spec Fit a Model Specification to a Dataset

Description

fit() and fit xy() take a model specification, translate the required code by substituting
arguments, and execute the model fit routine.

Usage

S3 method for class 'model_spec'
fit(object, formula, data, control = control_parsnip(), ...)

S3 method for class 'model_spec'
fit_xy(object, x, y, control = control_parsnip(), ...)

fit.model spec 13

Arguments

object An object of class model spec that has a chosen engine (via set engine()).

formula An object of class formula (or one that can be coerced to that class): a
symbolic description of the model to be fitted.

data Optional, depending on the interface (see Details below). A data frame
containing all relevant variables (e.g. outcome(s), predictors, case weights,
etc). Note: when needed, a named argument should be used.

control A named list with elements verbosity and catch. See control parsnip().

... Not currently used; values passed here will be ignored. Other options
required to fit the model should be passed using set engine().

x A matrix, sparse matrix, or data frame of predictors. Only some models
have support for sparse matrix input. See parsnip::get encoding() for
details. x should have column names.

y A vector, matrix or data frame of outcome data.

Details

fit() and fit xy() substitute the current arguments in the model specification into the
computational engine’s code, check them for validity, then fit the model using the data and
the engine-specific code. Different model functions have different interfaces (e.g. formula
or x/y) and these functions translate between the interface used when fit() or fit xy()
was invoked and the one required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if
the underlying model uses a formula and fit() is invoked, the original data are references
when the model is fit. However, if the underlying model uses something else, such as x/y,
the formula is evaluated and the data are converted to the required format. In this case, any
calls in the resulting model objects reference the temporary objects used to fit the model.

If the model engine has not been set, the model’s default engine will be used (as discussed
on each model page). If the verbosity option of control parsnip() is greater than zero,
a warning will be produced.

Value

A model fit object that contains several elements:

� lvl: If the outcome is a factor, this contains the factor levels at the time of model
fitting.

� spec: The model specification object (object in the call to fit)

� fit: when the model is executed without error, this is the model object. Otherwise,
it is a try-error object with the error message.

� preproc: any objects needed to convert between a formula and non-formula interface
(such as the terms object)

The return value will also have a class related to the fitted model (e.g. " glm") before the
base class of "model fit".

See Also

set engine(), control parsnip(), model spec, model fit

14 gen additive mod

Examples

Although `glm()` only has a formula interface, different
methods for specifying the model can be used

library(dplyr)
library(modeldata)
data("lending_club")

lr_mod <- logistic_reg()

using_formula <-
lr_mod %>%
set_engine("glm") %>%
fit(Class ˜ funded_amnt + int_rate, data = lending_club)

using_xy <-
lr_mod %>%
set_engine("glm") %>%
fit_xy(x = lending_club[, c("funded_amnt", "int_rate")],

y = lending_club$Class)

using_formula
using_xy

gen additive mod Generalized additive models (GAMs)

Description

gen additive mod() defines a model that can use smoothed functions of numeric predictors
in a generalized linear model.

There are different ways to fit this model. See the engine-specific pages for more details

� mgcv (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

gen_additive_mod(
mode = "unknown",
select_features = NULL,
adjust_deg_free = NULL,
engine = "mgcv"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

https://www.tidymodels.org/

glance.model fit 15

select features

TRUE or FALSE. If TRUE, the model has the ability to eliminate a predictor
(via penalization). Increasing adjust deg free will increase the likelihood
of removing predictors.

adjust deg free If select features = TRUE, then acts as a multiplier for smoothness. In-
crease this beyond 1 to produce smoother models.

engine A single character string specifying what computational engine to use for
fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), mgcv engine details

Examples

show_engines("gen_additive_mod")

gen_additive_mod()

glance.model fit Construct a single row summary ”glance” of a model, fit, or other
object

Description

This method glances the model in a parsnip model object, if it exists.

Usage

S3 method for class 'model_fit'
glance(x, ...)

Arguments

x model or other R object to convert to single-row data frame

... other arguments passed to methods

Value

a tibble

https://www.tidymodels.org
https://www.tmwr.org/

16 linear reg

linear reg Linear regression

Description

linear reg() defines a model that can predict numeric values from predictors using a linear
function.

There are different ways to fit this model. See the engine-specific pages for more details:

� lm (default)

� glmnet

� stan

� spark

� keras

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

linear_reg(mode = "regression", engine = "lm", penalty = NULL, mixture = NULL)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”regression”.

engine A single character string specifying what computational engine to use for
fitting. Possible engines are listed below. The default for this model is
"lm".

penalty A non-negative number representing the total amount of regularization
(specific engines only).

mixture A number between zero and one (inclusive) that is the proportion of L1
regularization (i.e. lasso) in the model. When mixture = 1, it is a pure
lasso model while mixture = 0 indicates that ridge regression is being used
(specific engines only).

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), lm engine details, glmnet engine details,
stan engine details, spark engine details, keras engine details

https://www.tidymodels.org/
https://www.tidymodels.org
https://www.tmwr.org/

logistic reg 17

Examples

show_engines("linear_reg")

linear_reg()

logistic reg Logistic regression

Description

logistic reg() defines a generalized linear model for binary outcomes. A linear combina-
tion of the predictors is used to model the log odds of an event.

There are different ways to fit this model. See the engine-specific pages for more details:

� glm (default)

� glmnet

� LiblineaR

� spark

� keras

� stan

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

logistic_reg(
mode = "classification",
engine = "glm",
penalty = NULL,
mixture = NULL

)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”classification”.

engine A single character string specifying what computational engine to use for
fitting. Possible engines are listed below. The default for this model is
"glm".

penalty A non-negative number representing the total amount of regularization
(specific engines only). For keras models, this corresponds to purely L2
regularization (aka weight decay) while the other models can be either or
a combination of L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that is the proportion of L1
regularization (i.e. lasso) in the model. When mixture = 1, it is a pure
lasso model while mixture = 0 indicates that ridge regression is being used.
(specific engines only). For LiblineaR models, mixture must be exactly
0 or 1 only.

https://www.tidymodels.org/

18 mars

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), glm engine details, glmnet engine details,
LiblineaR engine details, spark engine details, keras engine details, stan engine details

Examples

show_engines("logistic_reg")

logistic_reg()

mars Multivariate adaptive regression splines (MARS)

Description

mars() defines a generalized linear model that uses artificial features for some predictors.
These features resemble hinge functions and the result is a model that is a segmented
regression in small dimensions.

There are different ways to fit this model. See the engine-specific pages for more details:

� earth (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

mars(
mode = "unknown",
engine = "earth",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/

maybe matrix 19

num terms The number of features that will be retained in the final model, including
the intercept.

prod degree The highest possible interaction degree.

prune method The pruning method.

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), earth engine details

Examples

show_engines("mars")

mars(mode = "regression", num_terms = 5)

maybe matrix Fuzzy conversions

Description

These are substitutes for as.matrix() and as.data.frame() that leave a sparse matrix
as-is.

Usage

maybe_matrix(x)

maybe_data_frame(x)

Arguments

x A data frame, matrix, or sparse matrix.

Value

A data frame, matrix, or sparse matrix.

https://www.tidymodels.org
https://www.tmwr.org/

20 min cols

min cols Execution-time data dimension checks

Description

For some tuning parameters, the range of values depend on the data dimensions (e.g. mtry).
Some packages will fail if the parameter values are outside of these ranges. Since the model
might receive resampled versions of the data, these ranges can’t be set prior to the point
where the model is fit. These functions check the possible range of the data and adjust
them if needed (with a warning).

Usage

min_cols(num_cols, source)

min_rows(num_rows, source, offset = 0)

Arguments

num cols, num rows

The parameter value requested by the user.

source A data frame for the data to be used in the fit. If the source is named
”data”, it is assumed that one column of the data corresponds to an
outcome (and is subtracted off).

offset A number subtracted off of the number of rows available in the data.

Value

An integer (and perhaps a warning).

Examples

nearest_neighbor(neighbors= 100) %>%
set_engine("kknn") %>%
set_mode("regression") %>%
translate()

library(ranger)
rand_forest(mtry = 2, min_n = 100, trees = 3) %>%

set_engine("ranger") %>%
set_mode("regression") %>%
fit(mpg ˜ ., data = mtcars)

mlp 21

mlp Single layer neural network

Description

mlp() defines a multilayer perceptron model (a.k.a. a single layer, feed-forward neural
network).

There are different ways to fit this model. See the engine-specific pages for more details:

� keras

� nnet (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

mlp(
mode = "unknown",
engine = "nnet",
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

hidden units An integer for the number of units in the hidden model.

penalty A non-negative numeric value for the amount of weight decay.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model
parameters randomly set to zero during model training.

epochs An integer for the number of training iterations.

activation A single character string denoting the type of relationship between the
original predictors and the hidden unit layer. The activation function
between the hidden and output layers is automatically set to either ”lin-
ear” or ”softmax” depending on the type of outcome. Possible values are:
”linear”, ”softmax”, ”relu”, and ”elu”

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

https://www.tidymodels.org/

22 model fit

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), keras engine details, nnet engine details

Examples

show_engines("mlp")

mlp(mode = "classification", penalty = 0.01)

model fit Model Fit Object Information

Description

An object with class ”model fit” is a container for information about a model that has been
fit to the data.

Details

The main elements of the object are:

� lvl: A vector of factor levels when the outcome is a factor. This is NULL when the
outcome is not a factor vector.

� spec: A model spec object.

� fit: The object produced by the fitting function.

� preproc: This contains any data-specific information required to process new a sample
point for prediction. For example, if the underlying model function requires arguments
x and y and the user passed a formula to fit, the preproc object would contain items
such as the terms object and so on. When no information is required, this is NA.

As discussed in the documentation for model spec, the original arguments to the specifica-
tion are saved as quosures. These are evaluated for the model fit object prior to fitting.
If the resulting model object prints its call, any user-defined options are shown in the call
preceded by a tilde (see the example below). This is a result of the use of quosures in the
specification.

This class and structure is the basis for how parsnip stores model objects after seeing the
data and applying a model.

Examples

Keep the `x` matrix if the data are not too big.
spec_obj <-

linear_reg() %>%
set_engine("lm", x = ifelse(.obs() < 500, TRUE, FALSE))

spec_obj

fit_obj <- fit(spec_obj, mpg ˜ ., data = mtcars)

https://www.tidymodels.org
https://www.tmwr.org/

model spec 23

fit_obj

nrow(fit_objfitx)

model spec Model Specification Information

Description

An object with class ”model spec” is a container for information about a model that will
be fit.

Details

The main elements of the object are:

� args: A vector of the main arguments for the model. The names of these arguments
may be different from their counterparts n the underlying model function. For exam-
ple, for a glmnet model, the argument name for the amount of the penalty is called
”penalty” instead of ”lambda” to make it more general and usable across different
types of models (and to not be specific to a particular model function). The elements
of args can varying(). If left to their defaults (NULL), the arguments will use the
underlying model functions default value. As discussed below, the arguments in args
are captured as quosures and are not immediately executed.

– ...: Optional model-function-specific parameters. As with args, these will be
quosures and can be varying().

– mode: The type of model, such as ”regression” or ”classification”. Other modes
will be added once the package adds more functionality.

– method: This is a slot that is filled in later by the model’s constructor function. It
generally contains lists of information that are used to create the fit and prediction
code as well as required packages and similar data.

– engine: This character string declares exactly what software will be used. It can
be a package name or a technology type.

This class and structure is the basis for how parsnip stores model objects prior to
seeing the data.

Argument Details

An important detail to understand when creating model specifications is that they are
intended to be functionally independent of the data. While it is true that some tuning
parameters are data dependent, the model specification does not interact with the data at
all.

For example, most R functions immediately evaluate their arguments. For example, when
calling mean(dat vec), the object dat vec is immediately evaluated inside of the function.

parsnip model functions do not do this. For example, using

rand_forest(mtry = ncol(mtcars) - 1)

does not execute ncol(mtcars) -1 when creating the specification. This can be seen in the
output:

24 model spec

> rand_forest(mtry = ncol(mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(mtcars) - 1

The model functions save the argument expressions and their associated environments
(a.k.a. a quosure) to be evaluated later when either fit.model spec() or fit xy.model spec()
are called with the actual data.

The consequence of this strategy is that any data required to get the parameter values must
be available when the model is fit. The two main ways that this can fail is if:

1. The data have been modified between the creation of the model specification and when
the model fit function is invoked.

2. If the model specification is saved and loaded into a new session where those same
data objects do not exist.

The best way to avoid these issues is to not reference any data objects in the global envi-
ronment but to use data descriptors such as .cols(). Another way of writing the previous
specification is

rand_forest(mtry = .cols() - 1)

This is not dependent on any specific data object and is evaluated immediately before the
model fitting process begins.

One less advantageous approach to solving this issue is to use quasiquotation. This would
insert the actual R object into the model specification and might be the best idea when the
data object is small. For example, using

rand_forest(mtry = ncol(!!mtcars) - 1)

would work (and be reproducible between sessions) but embeds the entire mtcars data set
into the mtry expression:

> rand_forest(mtry = ncol(!!mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5, <snip>

However, if there were an object with the number of columns in it, this wouldn’t be too
bad:

> mtry_val <- ncol(mtcars) - 1
> mtry_val
[1] 10
> rand_forest(mtry = !!mtry_val)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = 10

More information on quosures and quasiquotation can be found at https://tidyeval.
tidyverse.org.

https://tidyeval.tidyverse.org
https://tidyeval.tidyverse.org

multinom reg 25

multinom reg Multinomial regression

Description

multinom reg() defines a model that uses linear predictors to predict multiclass data using
the multinomial distribution.

There are different ways to fit this model. See the engine-specific pages for more details:

� glmnet

� spark

� keras

� nnet (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

multinom_reg(
mode = "classification",
engine = "nnet",
penalty = NULL,
mixture = NULL

)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”classification”.

engine A single character string specifying what computational engine to use for
fitting. Possible engines are listed below. The default for this model is
"nnet".

penalty A non-negative number representing the total amount of regularization
(specific engines only). For keras models, this corresponds to purely
L2 regularization (aka weight decay) while the other models can be a
combination of L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that is the proportion of L1
regularization (i.e. lasso) in the model. When mixture = 1, it is a pure
lasso model while mixture = 0 indicates that ridge regression is being used.
(specific engines only).

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

https://www.tidymodels.org/
https://www.tidymodels.org
https://www.tmwr.org/

26 multi predict

See Also

fit.model spec(), set engine(), update(), glmnet engine details, spark engine details,
keras engine details, nnet engine details

Examples

show_engines("multinom_reg")

multinom_reg()

multi predict Model predictions across many sub-models

Description

For some models, predictions can be made on sub-models in the model object.

Usage

multi_predict(object, ...)

Default S3 method:
multi_predict(object, ...)

S3 method for class '`_xgb.Booster`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_C5.0`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_elnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_lognet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_earth`'
multi_predict(object, new_data, type = NULL, num_terms = NULL, ...)

S3 method for class '`_multnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_train.kknn`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

Arguments

object A model fit object.

... Optional arguments to pass to predict.model fit(type = "raw") such as
type.

new data A rectangular data object, such as a data frame.

nearest neighbor 27

type A single character value or NULL. Possible values are "numeric", "class",
"prob", "conf int", "pred int", "quantile", or "raw". When NULL,
predict() will choose an appropriate value based on the model’s mode.

trees An integer vector for the number of trees in the ensemble.

penalty A numeric vector of penalty values.

num terms An integer vector for the number of MARS terms to retain.

neighbors An integer vector for the number of nearest neighbors.

Value

A tibble with the same number of rows as the data being predicted. There is a list-column
named .pred that contains tibbles with multiple rows per sub-model. Note that, within
the tibbles, the column names follow the usual standard based on prediction type (i.e.
.pred class for type = "class" and so on).

nearest neighbor K-nearest neighbors

Description

nearest neighbor() defines a model that uses the K most similar data points from the
training set to predict new samples.

There are different ways to fit this model. See the engine-specific pages for more details:

� kknn (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

nearest_neighbor(
mode = "unknown",
engine = "kknn",
neighbors = NULL,
weight_func = NULL,
dist_power = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

neighbors A single integer for the number of neighbors to consider (often called k).
For kknn, a value of 5 is used if neighbors is not specified.

weight func A single character for the type of kernel function used to weight distances
between samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist power A single number for the parameter used in calculating Minkowski distance.

https://www.tidymodels.org/

28 null model

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), kknn engine details

Examples

show_engines("nearest_neighbor")

nearest_neighbor(neighbors = 11)

null model Null model

Description

null model() defines a simple, non-informative model. It doesn’t have any main arguments.

Usage

null_model(mode = "classification")

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

Details

The model can be created using the fit() function using the following engines:

� R: "parsnip"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are below:

parsnip:

null_model() %>%
set_engine("parsnip") %>%
set_mode("regression") %>%
translate()

https://www.tidymodels.org
https://www.tmwr.org/

parsnip addin 29

Model Specification (regression)
##
Computational engine: parsnip
##
Model fit template:
nullmodel(x = missing_arg(), y = missing_arg())

null_model() %>%
set_engine("parsnip") %>%
set_mode("classification") %>%
translate()

Model Specification (classification)
##
Computational engine: parsnip
##
Model fit template:
nullmodel(x = missing_arg(), y = missing_arg())

See Also

fit.model spec()

Examples

null_model(mode = "regression")

parsnip addin Start an RStudio Addin that can write model specifications

Description

parsnip addin() starts a process in the RStudio IDE Viewer window that allows users to
write code for parsnip model specifications from various R packages. The new code is
written to the current document at the location of the cursor.

Usage

parsnip_addin()

rand forest Random forest

30 rand forest

Description

rand forest() defines a model that creates a large number of decision trees, each indepen-
dent of the others. The final prediction uses all predictions from the individual trees and
combines them.

There are different ways to fit this model. See the engine-specific pages for more details:

� ranger (default)

� randomForest

� spark

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

rand_forest(
mode = "unknown",
engine = "ranger",
mtry = NULL,
trees = NULL,
min_n = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

mtry An integer for the number of predictors that will be randomly sampled
at each split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), ranger engine details, randomForest engine
details, spark engine details

https://www.tidymodels.org/
https://www.tidymodels.org
https://www.tmwr.org/

repair call 31

Examples

show_engines("rand_forest")

rand_forest(mode = "classification", trees = 2000)

repair call Repair a model call object

Description

When the user passes a formula to fit() and the underlying model function uses a formula,
the call object produced by fit() may not be usable by other functions. For example, some
arguments may still be quosures and the data portion of the call will not correspond to the
original data.

Usage

repair_call(x, data)

Arguments

x A fitted parsnip model. An error will occur if the underlying model does
not have a call element.

data A data object that is relavant to the call. In most cases, this is the data
frame that was given to parsnip for the model fit (i.e., the training set
data). The name of this data object is inserted into the call.

Details

repair call() call can adjust the model objects call to be usable by other functions and
methods.

Value

A modified parsnip fitted model.

Examples

fitted_model <-
linear_reg() %>%
set_engine("lm", model = TRUE) %>%
fit(mpg ˜ ., data = mtcars)

In this call, note that `data` is not `mtcars` and the `model = ˜TRUE`
indicates that the `model` argument is an `rlang` quosure.
fitted_modelfitcall

All better:
repair_call(fitted_model, mtcars)fitcall

32 req pkgs

req pkgs Determine required packages for a model

Description

Determine required packages for a model

Usage

req_pkgs(x, ...)

S3 method for class 'model_spec'
req_pkgs(x, ...)

S3 method for class 'model_fit'
req_pkgs(x, ...)

S3 method for class 'model_spec'
required_pkgs(x, ...)

S3 method for class 'model_fit'
required_pkgs(x, ...)

Arguments

x A model specification or fit.

... Not used.

Details

For a model specification, the engine must be set. The list produced by req pkgs()does
not include the parsnip package while required pkgs() does.

Value

A character string of package names (if any).

Examples

should_fail <- try(req_pkgs(linear_reg()), silent = TRUE)
should_fail

linear_reg() %>%
set_engine("glmnet") %>%
req_pkgs()

linear_reg() %>%
set_engine("lm") %>%
fit(mpg ˜ ., data = mtcars) %>%
req_pkgs()

set args 33

set args Change elements of a model specification

Description

set args() can be used to modify the arguments of a model specification while set mode()
is used to change the model’s mode.

Usage

set_args(object, ...)

set_mode(object, mode)

Arguments

object A model specification.

... One or more named model arguments.

mode A character string for the model type (e.g. ”classification” or ”regres-
sion”)

Details

set args() will replace existing values of the arguments.

Value

An updated model object.

Examples

rand_forest()

rand_forest() %>%
set_args(mtry = 3, importance = TRUE) %>%
set_mode("regression")

set engine Declare a computational engine and specific arguments

Description

set engine() is used to specify which package or system will be used to fit the model, along
with any arguments specific to that software.

Usage

set_engine(object, engine, ...)

34 show engines

Arguments

object A model specification.

engine A character string for the software that should be used to fit the model.
This is highly dependent on the type of model (e.g. linear regression,
random forest, etc.).

... Any optional arguments associated with the chosen computational engine.
These are captured as quosures and can be varying().

Value

An updated model specification.

Examples

First, set general arguments using the standardized names
mod <-

logistic_reg(penalty = 0.01, mixture = 1/3) %>%
now say how you want to fit the model and another other options
set_engine("glmnet", nlambda = 10)

translate(mod, engine = "glmnet")

show engines Display currently available engines for a model

Description

The possible engines for a model can depend on what packages are loaded. Some parsnip-
adjacent packages add engines to existing models. For example, the multilevelmod package
adds additional engines for the linear reg() model and these are not available unless
multilevelmod is loaded.

Usage

show_engines(x)

Arguments

x The name of a parsnip model (e.g., ”linear reg”, ”mars”, etc.)

Value

A tibble.

Examples

show_engines("linear_reg")

svm linear 35

svm linear Linear support vector machines

Description

svm linear() defines a support vector machine model. For classification, the model tries
to maximize the width of the margin between classes. For regression, the model optimizes
a robust loss function that is only affected by very large model residuals.

This SVM model uses a linear function to create the decision boundary or regression line.

There are different ways to fit this model. See the engine-specific pages for more details:

� LiblineaR (default)

� kernlab

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

svm_linear(mode = "unknown", engine = "LiblineaR", cost = NULL, margin = NULL)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), LiblineaR engine details, kernlab engine
details

Examples

show_engines("svm_linear")

svm_linear(mode = "classification")

https://www.tidymodels.org/
https://www.tidymodels.org
https://www.tmwr.org/

36 svm poly

svm poly Polynomial support vector machines

Description

svm poly() defines a support vector machine model. For classification, the model tries to
maximize the width of the margin between classes. For regression, the model optimizes a
robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the
decision boundary or regression line.

There are different ways to fit this model. See the engine-specific pages for more details:

� kernlab (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

svm_poly(
mode = "unknown",
engine = "kernlab",
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting.

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

degree A positive number for polynomial degree.

scale factor A positive number for the polynomial scaling factor.

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

https://www.tidymodels.org/
https://www.tidymodels.org
https://www.tmwr.org/

svm rbf 37

See Also

fit.model spec(), set engine(), update(), kernlab engine details

Examples

show_engines("svm_poly")

svm_poly(mode = "classification", degree = 1.2)

svm rbf Radial basis function support vector machines

Description

svm rbf() defines a support vector machine model. For classification, the model tries to
maximize the width of the margin between classes. For regression, the model optimizes a
robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically the radial basis function, to create
the decision boundary or regression line.

There are different ways to fit this model. See the engine-specific pages for more details:

� kernlab (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

svm_rbf(
mode = "unknown",
engine = "kernlab",
cost = NULL,
rbf_sigma = NULL,
margin = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values
for this model are ”unknown”, ”regression”, or ”classification”.

engine A single character string specifying what computational engine to use for
fitting. Possible engines are listed below. The default for this model is
"kernlab".

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

rbf sigma A positive number for radial basis function.

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

https://www.tidymodels.org/

38 tidy.model fit

Details

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

See Also

fit.model spec(), set engine(), update(), kernlab engine details

Examples

show_engines("svm_rbf")

svm_rbf(mode = "classification", rbf_sigma = 0.2)

tidy.model fit Turn a parsnip model object into a tidy tibble

Description

This method tidies the model in a parsnip model object, if it exists.

Usage

S3 method for class 'model_fit'
tidy(x, ...)

Arguments

x An object to be converted into a tidy tibble::tibble().

... Additional arguments to tidying method.

Value

a tibble

https://www.tidymodels.org
https://www.tmwr.org/

translate 39

translate Resolve a Model Specification for a Computational Engine

Description

translate() will translate a model specification into a code object that is specific to a
particular engine (e.g. R package). It translates generic parameters to their counterparts.

Usage

translate(x, ...)

Default S3 method:
translate(x, engine = x$engine, ...)

Arguments

x A model specification.

... Not currently used.

engine The computational engine for the model (see ?set engine).

Details

translate() produces a template call that lacks the specific argument values (such as data,
etc). These are filled in once fit() is called with the specifics of the data for the model.
The call may also include varying arguments if these are in the specification.

It does contain the resolved argument names that are specific to the model fitting func-
tion/engine.

This function can be useful when you need to understand how parsnip goes from a generic
model specific to a model fitting function.

Note: this function is used internally and users should only use it to understand what the
underlying syntax would be. It should not be used to modify the model specification.

Examples

lm_spec <- linear_reg(penalty = 0.01)

`penalty` is tranlsated to `lambda`
translate(lm_spec, engine = "glmnet")

`penalty` not applicable for this model.
translate(lm_spec, engine = "lm")

`penalty` is tranlsated to `reg_param`
translate(lm_spec, engine = "spark")

with a placeholder for an unknown argument value:
translate(linear_reg(penalty = varying(), mixture = varying()), engine = "glmnet")

40 update.boost tree

update.boost tree Update a model specification

Description

If parameters of a model specification need to be modified, update() can be used in lieu of
recreating the object from scratch.

Usage

S3 method for class 'boost_tree'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL,
fresh = FALSE,
...

)

S3 method for class 'decision_tree'
update(
object,
parameters = NULL,
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'gen_additive_mod'
update(
object,
select_features = NULL,
adjust_deg_free = NULL,
parameters = NULL,
fresh = FALSE,
...

)

S3 method for class 'linear_reg'
update(
object,
parameters = NULL,

update.boost tree 41

penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'logistic_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'mars'
update(
object,
parameters = NULL,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

S3 method for class 'mlp'
update(
object,
parameters = NULL,
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL,
fresh = FALSE,
...

)

S3 method for class 'multinom_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'nearest_neighbor'
update(

42 update.boost tree

object,
parameters = NULL,
neighbors = NULL,
weight_func = NULL,
dist_power = NULL,
fresh = FALSE,
...

)

S3 method for class 'proportional_hazards'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'rand_forest'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'surv_reg'
update(object, parameters = NULL, dist = NULL, fresh = FALSE, ...)

S3 method for class 'survival_reg'
update(object, parameters = NULL, dist = NULL, fresh = FALSE, ...)

S3 method for class 'svm_linear'
update(
object,
parameters = NULL,
cost = NULL,
margin = NULL,
fresh = FALSE,
...

)

S3 method for class 'svm_poly'
update(
object,
parameters = NULL,
cost = NULL,
degree = NULL,

update.boost tree 43

scale_factor = NULL,
margin = NULL,
fresh = FALSE,
...

)

S3 method for class 'svm_rbf'
update(
object,
parameters = NULL,
cost = NULL,
rbf_sigma = NULL,
margin = NULL,
fresh = FALSE,
...

)

Arguments

object A model specification.

parameters A 1-row tibble or named list with main parameters to update. Use either
parameters or the main arguments directly when updating. If the main
arguments are used, these will supersede the values in parameters. Also,
using engine arguments in this object will result in an error.

mtry A number for the number (or proportion) of predictors that will be ran-
domly sampled at each split when creating the tree models (specific en-
gines only)

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that is
required for the node to be split further.

tree depth An integer for the maximum depth of the tree (i.e. number of splits)
(specific engines only).

learn rate A number for the rate at which the boosting algorithm adapts from
iteration-to-iteration (specific engines only).

loss reduction A number for the reduction in the loss function required to split further
(specific engines only).

sample size A number for the number (or proportion) of data that is exposed to the
fitting routine. For xgboost, the sampling is done at each iteration while
C5.0 samples once during training.

stop iter The number of iterations without improvement before stopping (specific
engines only).

fresh A logical for whether the arguments should be modified in-place or re-
placed wholesale.

... Not used for update().

cost complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used
by CART models (specific engines only).

44 update.boost tree

select features

TRUE or FALSE. If TRUE, the model has the ability to eliminate a predictor
(via penalization). Increasing adjust deg free will increase the likelihood
of removing predictors.

adjust deg free If select features = TRUE, then acts as a multiplier for smoothness. In-
crease this beyond 1 to produce smoother models.

penalty A non-negative number representing the total amount of regularization
(specific engines only).

mixture A number between zero and one (inclusive) that is the proportion of L1
regularization (i.e. lasso) in the model. When mixture = 1, it is a pure
lasso model while mixture = 0 indicates that ridge regression is being used
(specific engines only).

num terms The number of features that will be retained in the final model, including
the intercept.

prod degree The highest possible interaction degree.

prune method The pruning method.

hidden units An integer for the number of units in the hidden model.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model
parameters randomly set to zero during model training.

epochs An integer for the number of training iterations.

activation A single character string denoting the type of relationship between the
original predictors and the hidden unit layer. The activation function
between the hidden and output layers is automatically set to either ”lin-
ear” or ”softmax” depending on the type of outcome. Possible values are:
”linear”, ”softmax”, ”relu”, and ”elu”

neighbors A single integer for the number of neighbors to consider (often called k).
For kknn, a value of 5 is used if neighbors is not specified.

weight func A single character for the type of kernel function used to weight distances
between samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist power A single number for the parameter used in calculating Minkowski distance.

dist A character string for the outcome distribution. ”weibull” is the default.

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

degree A positive number for polynomial degree.

scale factor A positive number for the polynomial scaling factor.

rbf sigma A positive number for radial basis function.

Value

An updated model specification.

varying args.model spec 45

Examples

model <- boost_tree(mtry = 10, min_n = 3)
model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

param_values <- tibble::tibble(mtry = 10, tree_depth = 5)

model %>% update(param_values)
model %>% update(param_values, mtry = 3)

param_values$verbose <- 0
Fails due to engine argument
model %>% update(param_values)

model <- linear_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

varying args.model spec

Determine varying arguments

Description

varying args() takes a model specification or a recipe and returns a tibble of information
on all possible varying arguments and whether or not they are actually varying.

Usage

S3 method for class 'model_spec'
varying_args(object, full = TRUE, ...)

S3 method for class 'recipe'
varying_args(object, full = TRUE, ...)

S3 method for class 'step'
varying_args(object, full = TRUE, ...)

Arguments

object A model spec or a recipe.

full A single logical. Should all possible varying parameters be returned? If
FALSE, then only the parameters that are actually varying are returned.

... Not currently used.

Details

The id column is determined differently depending on whether a model spec or a recipe
is used. For a model spec, the first class is used. For a recipe, the unique step id is used.

46 varying args.model spec

Value

A tibble with columns for the parameter name (name), whether it contains any varying
value (varying), the id for the object (id), and the class that was used to call the method
(type).

Examples

List all possible varying args for the random forest spec
rand_forest() %>% varying_args()

mtry is now recognized as varying
rand_forest(mtry = varying()) %>% varying_args()

Even engine specific arguments can vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args()

List only the arguments that actually vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args(full = FALSE)

rand_forest() %>%
set_engine(
"randomForest",
strata = Class,
sampsize = varying()

) %>%
varying_args()

	add_rowindex
	augment.model_fit
	boost_tree
	control_parsnip
	contr_one_hot
	decision_tree
	descriptors
	extract-parsnip
	fit.model_spec
	gen_additive_mod
	glance.model_fit
	linear_reg
	logistic_reg
	mars
	maybe_matrix
	min_cols
	mlp
	model_fit
	model_spec
	multinom_reg
	multi_predict
	nearest_neighbor
	null_model
	parsnip_addin
	rand_forest
	repair_call
	req_pkgs
	set_args
	set_engine
	show_engines
	svm_linear
	svm_poly
	svm_rbf
	tidy.model_fit
	translate
	update.boost_tree
	varying_args.model_spec

