
Package ‘ibdsim2’
July 24, 2021

Type Package
Title Simulation of Chromosomal Regions Shared by Family Members
Version 1.4.0
Description Simulation of segments shared identical-by-descent (IBD) by

pedigree members. Using sex specific recombination rates along the
human genome (Halldorsson et al. (2019)
<doi:10.1126/science.aau1043>), phased chromosomes are simulated for
all pedigree members. Applications include calculation of realised
relatedness coefficients and IBD segment distributions. 'ibdsim2' is
part of the 'ped suite' collection of packages for pedigree analysis.
A detailed presentation of the 'ped suite', including a separate
chapter on 'ibdsim2', is available in the book 'Pedigree analysis in
R' (Vigeland, 2021, ISBN:9780128244302). A 'shiny' app for visualising
and comparing IBD distributions is available at
<https://magnusdv.shinyapps.io/ibdsim2-shiny/>.

License GPL-3

URL https://github.com/magnusdv/ibdsim2,
https://magnusdv.github.io/pedsuite/,
https://magnusdv.shinyapps.io/ibdsim2-shiny/

Depends pedtools (>= 1.0.0), R (>= 3.5.0)
Imports ggplot2, glue, Rcpp, ribd (>= 1.1.0)
Suggests testthat
LinkingTo Rcpp
Encoding UTF-8
Language en-GB
RoxygenNote 7.1.1
NeedsCompilation yes
Author Magnus Dehli Vigeland [aut, cre]

(<https://orcid.org/0000-0002-9134-4962>)
Maintainer Magnus Dehli Vigeland <m.d.vigeland@medisin.uio.no>

Repository CRAN
Date/Publication 2021-07-24 04:30:02 UTC

1

https://doi.org/10.1126/science.aau1043
https://magnusdv.shinyapps.io/ibdsim2-shiny/
https://github.com/magnusdv/ibdsim2
https://magnusdv.github.io/pedsuite/
https://magnusdv.shinyapps.io/ibdsim2-shiny/
https://orcid.org/0000-0002-9134-4962

2 convertPos

R topics documented:

convertPos . 2
customMap . 3
estimateCoeffs . 4
extractIds . 7
findPattern . 8
haploDraw . 9
ibdsim . 11
ibdsim2 . 13
loadMap . 13
maplengths . 14
plotSegmentDistribution . 16
profileSimIBD . 18
realised . 19
segmentStats . 21
uniformMap . 22
zeroIBD . 22

Index 24

convertPos Conversion of genetic map positions

Description

Convert between physical position (in megabases) and genetic position (centiMorgan) given a chro-
mosome map. Linear extrapolation is used to convert positions between map points.

Usage

convertPos(Mb = NULL, cM = NULL, map)

Arguments

Mb A vector of physical positions (in Mb), or NULL.

cM A vector of genetic positions (in cM), or NULL.

map A data frame with columns Mb and cM.

Value

A vector of the same length as the input.

customMap 3

Examples

Chromosome 1 of the built-in recombination map
map = loadMap(chrom = 1)[[1]]
head(map$male)

Conversion Mb -> cM
phys = 1:5
gen = convertPos(Mb = phys, map = map$male)
gen

Convert back (note the first position, which was outside of map)
convertPos(cM = gen, map = map$male)

customMap Custom recombination map

Description

Create custom recombination maps for use in ibdsim().

Usage

customMap(x)

Arguments

x A data frame or matrix. See details for format specifications.

Details

The column names of x must include either

• chrom, mb and cm (sex-averaged map)

or

• chrom, mb, male and female (sex-specific map)

Upper-case letters are allowed in these names. The mb column should contain physical positions in
megabases, while cm, male, female give the corresponding genetic position in centiMorgans.

Value

An object of class genomeMap.

See Also

uniformMap(), loadMap()

4 estimateCoeffs

Examples

A map including two chromosomes.
df1 = data.frame(chrom = c(1, 1, 2, 2),

mb = c(0, 2, 0, 5),
cm = c(0, 3, 0, 6))

map1 = customMap(df1)
map1

Use columns "male" and "female" to make sex specific maps
df2 = data.frame(chrom = c(1, 1, 2, 2),

mb = c(0, 2, 0, 5),
male = c(0, 3, 0, 6),
female = c(0, 4, 0, 7))

map2 = customMap(df2)
map2

estimateCoeffs Estimation of one- and two-locus relatedness coefficients

Description

Estimate by simulation various relatedness coefficients, and two-locus versions of the same coeffi-
cients, for a given recombination rate. The current implementation covers inbreeding coefficients,
kinship coefficients, IBD (kappa) coefficients between noninbred individuals, and condensed iden-
tity coefficients. These functions are primarily meant as tools for validating exact algorithms, e.g.,
as implemented in the ribd package.

Usage

estimateInbreeding(x, id, Nsim, Xchrom = FALSE, verbose = FALSE, ...)

estimateTwoLocusInbreeding(
x,
id,
rho = NULL,
cM = NULL,
Nsim,
Xchrom = FALSE,
verbose = FALSE,
...

)

estimateKinship(x, ids, Nsim, Xchrom = FALSE, verbose = FALSE, ...)

estimateTwoLocusKinship(
x,
ids,

estimateCoeffs 5

rho = NULL,
cM = NULL,
Nsim,
Xchrom = FALSE,
verbose = FALSE,
...

)

estimateKappa(x, ids, Nsim, Xchrom = FALSE, verbose = FALSE, ...)

estimateTwoLocusKappa(
x,
ids,
rho = NULL,
cM = NULL,
Nsim,
Xchrom = FALSE,
verbose = FALSE,
...

)

estimateIdentity(x, ids, Nsim, Xchrom = FALSE, verbose = FALSE, ...)

estimateTwoLocusIdentity(
x,
ids,
rho = NULL,
cM = NULL,
Nsim,
Xchrom = FALSE,
verbose = FALSE,
...

)

Arguments

x A pedigree in the form of a pedtools::ped() object.

id, ids A vector of one or two ID labels.

Nsim The number of simulations.

Xchrom A logical indicating if the loci are X-linked (if TRUE) or autosomal (FALSE).

verbose A logical.

... Further arguments passed on to ibdsim(), e.g. seed.

rho A scalar in the interval [0, 0.5]: the recombination fraction between the two loci,
converted to centiMorgans using Haldane’s map function: cM = -50 * log(1 - 2
* rho). Either rho or cM (but not both) must be non-NULL.

cM A non-negative number: the genetic distance between the two loci, given in
centiMorgans. Either rho or cM (but not both) must be non-NULL.

6 estimateCoeffs

Details

In the following, let L1 and L2 denote two arbitrary autosomal loci with recombination rate ρ, and
let A and B be members of the pedigree x.

The two-locus inbreeding coefficient f2(ρ) of A is defined as the probability that A is autozygous
at both L1 and L2 simultaneously.

The two-locus kinship coefficient φ2(ρ) of A and B is defined as the probability that a random
gamete emitted from A, and a random gamete emitted from B, contain IBD alleles at both L1 and
L2.

The two-locus kappa coefficient κij(ρ), for i, j = 0, 1, 2, of noninbred A and B, is the probability
that A and B share exactly i alleles IBD at L1, and exactly j alleles IBD at L2.

The two-locus identity coefficient ∆ij , i, j = 1, ..., 9 is defined for any (possibly inbred) A and
B, as the probability that A and B are in identity state i at L1, and state j at L2. This uses the
conventional ordering of the nine condensed identity states. For details, see for instance the GitHub
page of the ribd package.

Value

estimateInbreeding(): a single probability.

estimateTwoLocusInbreeding(): a single probability.

estimateKappa(): a numeric vector of length 3, with the estimated κ coefficients.

estimateTwoLocusKappa(): a symmetric, numerical 3*3 matrix, with the estimated values of κij ,
for i, j = 0, 1, 2.

estimateIdentity(): a numeric vector of length 9, with the estimated identity coefficients.

estimateTwoLocusIdentity(): a symmetric, numerical 9*9 matrix, with the estimated values of
∆ij , for i, j = 1, ..., 9.

Examples

############################
Two-locus inbreeding
############################

x = cousinPed(0, child = TRUE)
rho = 0.25
Nsim = 10 # Increase!
estimateTwoLocusInbreeding(x, id = 5, rho = rho, Nsim = Nsim, seed = 123)

##
Two-locus kappa:
Grandparent vs half sib vs uncle
##

These are indistinguishable with unlinked loci, see e.g.
pages 182-183 in Egeland, Kling and Mostad (2016).
In the following, each simulation approximation is followed
by its exact counterpart.

https://github.com/magnusdv/ribd
https://github.com/magnusdv/ribd

extractIds 7

rho = 0.25; R = .5 * (rho^2 + (1-rho)^2)
Nsim = 10 # Should be increased to at least 10000

Grandparent/grandchild
G = linearPed(2); G.ids = c(1,5); # plot(G, hatched = G.ids)
estimateTwoLocusKappa(G, G.ids, rho = rho, Nsim = Nsim, seed = 123)[2,2]
.5*(1-rho) # exact

Half sibs
H = halfSibPed(); H.ids = c(4,5); # plot(H, hatched = H.ids)
estimateTwoLocusKappa(H, H.ids, rho = rho, Nsim = Nsim, seed = 123)[2,2]
R # exact

Uncle
U = cousinPed(0, removal = 1); U.ids = c(3,6); # plot(U, hatched = U.ids)
estimateTwoLocusKappa(U, U.ids, rho = rho, Nsim = Nsim, seed = 123)[2,2]
(1-rho) * R + rho/4 # exact

Exact calculations by ribd:
ribd::twoLocusIBD(G, G.ids, rho = rho, coefs = "k11")
ribd::twoLocusIBD(H, H.ids, rho = rho, coefs = "k11")
ribd::twoLocusIBD(U, U.ids, rho = rho, coefs = "k11")

##########################
Two-locus Jacquard
##########################

x = fullSibMating(1)
rho = 0.25
Nsim = 10 # (increase to at least 10000)

estimateTwoLocusIdentity(x, ids = 5:6, rho = rho, Nsim = Nsim, seed = 123)

Exact by ribd:
ribd::twoLocusIdentity(x, ids = 5:6, rho = rho)

extractIds Extract ID labels from simulation output

Description

Extract ID labels from simulation output

Usage

extractIds(sim)

8 findPattern

Arguments

sim Output from ibdsim()

Value

A character vector

Examples

s = ibdsim(nuclearPed(2), N=1, ids = 3:4)
stopifnot(all(extractIds(s) == c("3", "4")))

findPattern Find specific IBD patterns

Description

Find segments satisfying a particular pattern of IBD sharing, in a list of IBD simulations.

Usage

findPattern(sims, pattern, merge = TRUE, cutoff = 0)

Arguments

sims A genomeSim object, or a list of such. Typically made by ibdsim().

pattern A named list of vectors containing ID labels. Allowed names are autozygous,
heterozygous, carriers, noncarriers.

merge A logical, indicating if adjacent segments should be merged. Default: TRUE.

cutoff A non-negative number. Segments shorter than this are excluded from the out-
put. Default: 0.

Details

For each simulation, this function extracts the subset of rows satisfying the allele sharing specified
by pattern. That is, segments where, for some allele,

• all of pattern$autozygous are autozygous

• all of pattern$heterozygous have exactly one copy

• all of pattern$carriers have at least one copy

• none of pattern$noncarriers carry the allele.

Value

A matrix (if sims is a single genomeSim object), or a list of matrices.

haploDraw 9

See Also

segmentStats()

Examples

x = nuclearPed(3)
s = ibdsim(x, N = 1, map = uniformMap(M = 1), seed = 1729)
s1 = s[[1]]

Segments where some allele is shared by 3 and 4, but not 5
pattern = list(carriers = 3:4, noncarriers = 5)
findPattern(s1, pattern)

Exclude segments less than 7 cM
findPattern(s1, pattern, cutoff = 7)

Visual confirmation:
haploDraw(x, s1, margin = c(5,3,3,3))

haploDraw Draw haplotypes onto a pedigree plot

Description

Visualise the IBD pattern of a single chromosome, by drawing haplotypes onto the pedigree.

Usage

haploDraw(
x,
ibd,
chrom = NULL,
pos = 1,
cols = NULL,
height = 4,
width = 0.5,
sep = 0.75,
dist = 1.5,
...

)

Arguments

x A ped object.

ibd A genomeSim object.

chrom A chromosome number, needed if ibd contains data from multiple chromo-
somes.

10 haploDraw

pos A vector recycled to the length of labels(x), indicating where haplotypes
should be drawn relative to the pedigree symbols: 0 = no haplotypes; 1 = below;
2 = left; 3 = above; 4 = right. By default, all are placed below.

cols A colour vector corresponding to the alleles in ibd.

height The haplotype height divided by the height of a pedigree symbol.

width The haplotype width divided by the width of a pedigree symbol.

sep The separation between haplotypes within a pair, given as a fraction of width.

dist The distance between pedigree symbols and the closest haplotype, given as a
fraction of width.

... Arguments passed on to plot.ped().

Value

None.

Examples

op = par(no.readonly = TRUE)

###############################
Example 1: A family quartet
###############################

x = nuclearPed(2)
s = ibdsim(x, N = 1, map = uniformMap(M = 1), seed = 4276)
s[[1]]

haploDraw(x, s[[1]], pos = c(2,4,2,4), cols = c(3,7,2,4),
margins = c(2, 5, 5, 5), cex = 1.2)

###########################
Example 2: Autozygosity
###########################

x = halfCousinPed(0, child = TRUE)
s = ibdsim(x, N = 1, map = uniformMap(M = 1),

skipRecomb = spouses(x, 2), seed = 19499)
s[[1]]

Grey colour (8) for irrelevant founder alleles
haploDraw(x, s[[1]], pos = c(0,1,0,2,4,4),

cols = c(8,8,3,7,8,8), margin = c(2, 2, 2, 2))

Restore graphics parameters
par(op)

ibdsim 11

ibdsim IBD simulation

Description

This is the main function of the package, simulating the recombination process in each meioses of
a pedigree. The output summarises the IBD segments between all or a subset of individuals.

Usage

ibdsim(
x,
N = 1,
ids = labels(x),
map = "decode",
model = c("chi", "haldane"),
skipRecomb = NULL,
seed = NULL,
verbose = TRUE

)

Arguments

x A pedtools::ped() object.

N A positive integer indicating the number of simulations.

ids A subset of pedigree members whose IBD sharing should be analysed. If NULL,
all members are included.

map The genetic map to be used in the simulations: Allowed values are:

• a genomeMap object, typically produced by loadMap()

• a single chromMap object, for instance as produced by uniformMap()

• a character, which is passed on to loadMap() with default parameters. Cur-
rently the only valid option is "decode19" (or abbreviations of this).

Default: "decode19".

model Either "chi" or "haldane", indicating the statistical model for recombination (see
details). Default: "chi".

skipRecomb A vector of ID labels indicating individuals whose meioses should be simulated
without recombination. (Each child will then receive a random strand of each
chromosome.) The default action is to skip recombination in founders who are
uninformative for IBD sharing in the ids individuals.

seed An integer to be passed on to set.seed()).

verbose A logical.

12 ibdsim

Details

Each simulation starts by unique alleles (labelled 1, 2, ...) being distributed to the pedigree founders.
In each meiosis, homologue chromosomes are made to recombine according to the value of model:

• model = "haldane": In this model, crossover events are modelled as a Poisson process along
each chromosome.

• model = "chi" (default): This uses a renewal process along the four-strand bundle, with wait-
ing times following a chi square distribution.

Recombination rates along each chromosome are determined by the map parameter. The default
value ("decode19") loads a thinned version of the recombination map of the human genome pub-
lished by Halldorsson et al (2019).

In many applications, the fine-scale default map is not necessary, and should be replaced by simpler
maps with constant recombination rates. See uniformMap() and loadMap() for ways to produce
such maps.

Value

A list of N objects of class genomeSim.

A genomeSim object is essentially a numerical matrix describing the allele flow through the pedigree
in a single simulated. Each row corresponds to a chromosomal segment. The first 4 columns
describe the segment (chromosome, start, end, length), and are followed by two columns (paternal
allele, maternal allele) for each of the ids individuals.

If ids has length 1, a column named "Aut" is added, whose entries are 1 for autozygous segments
and 0 otherwise.

If ids has length 2, two columns are added:

• IBD : The IBD status of each segment (= number of alleles shared identical by descent). For
a given segment, the IBD status is either 0, 1, 2 or NA. If either individual is inbred, they
may be autozygous in a segment, in which case the IBD status is reported as NA. With inbred
individuals the Sigma column (see below) is more informative than the IBD column.

• Sigma : The condensed identity ("Jacquard") state of each segment, given as an integer in
the range 1-9. The numbers correspond to the standard ordering of the condensed states.
In particular, for non-inbred individuals the states 9, 8, 7 correspond to IBD status 0, 1, 2
respectively.

References

Halldorsson et al. Characterizing mutagenic effects of recombination through a sequence-level
genetic map. Science 363, no. 6425 (2019).

Examples

hs = halfSibPed()
ibdsim(hs, N = 2, map = uniformMap(M = 1), ids = 4:5)

Full sib mating: all 9 states are possible

ibdsim2 13

x = fullSibMating(1)
sim = ibdsim(x, N = 1, ids = 5:6, map = uniformMap(M = 10), seed = 1)
s = sim[[1]]
stopifnot(setequal(s[, 'Sigma'], 1:9))

ibdsim2 ibdsim2: Simulation of chromosomal regions shared by family mem-
bers

Description

Simulation of segments shared identical-by-descent (IBD) by pedigree members. Using sex spe-
cific recombination rates along the human genome (Halldorsson et al., 2019), phased chromosomes
are simulated for all pedigree members. Additional features include calculation of realised IBD
coefficients and IBD segment distribution plots.

References

Halldorsson et al. Characterizing mutagenic effects of recombination through a sequence-level
genetic map. Science 363, no. 6425 (2019) doi: 10.1126/science.aau1043

loadMap Load a built-in genetic map

Description

This function loads one of the built-in genetic maps. Currently, the available map is based on the
publication by Halldorsson et al. (2019).

Usage

loadMap(map = "decode19", chrom = 1:22, uniform = FALSE, sexAverage = FALSE)

Arguments

map The name of the wanted map, possibly abbreviated. Currently, the only valid
choice is "decode19" (default).

chrom A numeric vector indicating which chromosomes to load. Default: 1:22 (the
autosomes).

uniform A logical. If FALSE (default), the complete inhomogeneous map is used. If
TRUE, a uniform version of the same map is produced, i.e., with the correct
lengths, but constant recombination rate along each chromosome.

sexAverage A logical, by default FALSE. If TRUE, a sex-averaged map is returned, with
equal recombination rates for males and females.

https://doi.org/10.1126/science.aau1043

14 maplengths

Details

For reasons of speed and efficiency, the built-in map is a thinned version of the published map
(Halldorsson et al., 2019), keeping around 60 000 data points.

By setting uniform = TRUE, a uniform version of the map is returned, in which each chromosome
has the same genetic lengths as in the original, but with constant recombination rates. This gives
much faster simulations and may be preferable in some applications.

Value

An object of class genomeMap.

References

Halldorsson et al. Characterizing mutagenic effects of recombination through a sequence-level
genetic map. Science 363, no. 6425 (2019).

See Also

uniformMap(), customMap()

Examples

By default, the complete map of all 22 autosomes is returned
loadMap()

Uniform version
m = loadMap(uniform = TRUE)

Check chromosome 1
m1 = m[[1]]
m1$male
m1$female

maplengths Physical and genetic map lengths

Description

Utility functions for extracting the physical or genetic length of chromosome maps and genome
maps.

maplengths 15

Usage

mapLen(x, ...)

S3 method for class 'chromMap'
mapLen(x, sex = c("male", "female"), ...)

S3 method for class 'genomeMap'
mapLen(x, sex = c("male", "female"), ...)

physRange(x, ...)

S3 method for class 'chromMap'
physRange(x, ...)

S3 method for class 'genomeMap'
physRange(x, ...)

Arguments

x A chromMap or genomeMap object.

... Not used.

sex Either "male", "female" or both.

Value

mapLen() returns a numeric of the same length as sex, with the genetic length(s) in centiMorgan.

physRange() returns the physical length (in Mb) of the chromosome/genome covered by the map.
For example, for a chromosome map starting at 2 Mb and ending at 8 Mb, the output is 6.

See Also

loadMap(), uniformMap()

Examples

m = loadMap(chrom = 1:2)
m

Applied to `genomeMap` object:
physRange(m)
mapLen(m)

Applied to `chromMap` object:
physRange(m[[1]])
mapLen(m[[1]])

16 plotSegmentDistribution

plotSegmentDistribution

Scatter plots of IBD segment distributions

Description

Visualise and compare count/length distributions of IBD segments. Two types are currently imple-
mented: Segments of autozygosity (for a single person) and segments with (pairwise) IBD state
1.

Usage

plotSegmentDistribution(
...,
type = c("autozygosity", "ibd1"),
ids = NULL,
labels = NULL,
col = NULL,
shape = 1,
alpha = 1,
ellipses = TRUE,
title = NULL,
xlab = NULL,
ylab = NULL,
legendInside = TRUE

)

Arguments

... One or several objects of class genomeSimList, typically created by ibdsim().
They can be entered separately or as a list.

type A string indicating which segments should be plotted. Currently, the allowed
entries are "autozygosity" and "ibd1".

ids A list of the same length as ..., where each entry contains one or two ID labels
(depending on type). By default (NULL), these labels are extracted from the
inputs in
Two other short-cuts are possible: If a single vector is given, it is repeated for
all pedigrees. Finally, if ids is the word "leaves" then pedtools::leaves() is
used to extract labels in each pedigree.

labels An optional character vector of labels used in the legend. If NULL, the labels
are taken from names(...).

col An optional colour vector of the same length as

shape A vector with point shapes, of the same length as

alpha A transparency parameter for the scatter points.

ellipses A logical: Should confidence ellipses be added to the plot?

plotSegmentDistribution 17

title, xlab, ylab

Title and axis labels.

legendInside A logical controlling the legend placement.

Details

This function takes as input one or several complete outputs from the ibdsim(), and produces a
scatter plot of the number and average length of IBD segments from each.

Contour curves are added to plot, corresponding to the theoretical/pedigree-based values: either
inbreeding coefficients (if type = "autozygosity") or κ1 (if type = "ibd1").

Examples

Simulation parameters used in the below examples.
map = uniformMap(M = 10) # recombination map
N = 5 # number of sims

For more realistic results, replace with e.g.:
map = loadMap("decode19")
N = 1000

###
EXAMPLE 1
Comparison of IBD segment distributions
between paternal and maternal half siblings.
###

Define the pedigrees
xPat = halfSibPed()
xMat = swapSex(xPat, 1)

simPat = ibdsim(xPat, N = N, map = map)
simMat = ibdsim(xMat, N = N, map = map)

By default, the IBD segments of the "leaves" are computed and plotted
plotSegmentDistribution(simPat, simMat, type = "ibd1", ids = 4:5,

labels = c("HSpat", "HSmat"))

###
EXAMPLE 2
Half siblings vs half uncle vs grandparent/grandchild
###

Only one pedigree needed here
x = addSon(halfSibPed(), 5)

s = ibdsim(x, N = N, map = map)

Indicate the pairs explicitly this time.
ids = list(HS = 4:5, HU = c(4,7), GR = c(1,7))

18 profileSimIBD

List names are used as labels in the plot
plotSegmentDistribution(s, type = "ibd1", ids = ids, shape = 1:3)

###
EXAMPLE 3
Comparison of autozygosity distributions in various individuals
with the same expected inbreeding coefficient (f = 1/8)
###

G = swapSex(linearPed(2), 5) # grandfather/granddaughter
G = addChildren(G, 1, 5, 1)
HSpat = swapSex(halfSibPed(), 5) # paternal half sibs
HSpat = addChildren(HSpat, 4, 5, 1)
HSmat = swapSex(HSpat, 1) # maternal half sibs
QHFC = quadHalfFirstCousins() # quad half first cousins
QHFC = addChildren(QHFC, 9, 10, nch = 1)

peds = list(G = G, HSpat = HSpat, HSmat = HSmat, QHFC = QHFC)
plotPedList(peds, newdev = TRUE)
dev.off()

Simulations
s = lapply(peds, function(p)

ibdsim(p, N = N, ids = leaves(p), verbose = FALSE, map = map))

Plot distributions
plotSegmentDistribution(s, type = "autoz", title = "Autozygous segments")

profileSimIBD Simulate markers on a given IBD pattern

Description

This function simulates genotypes for a set of markers, conditional on a specific underlying IBD
pattern.

Usage

profileSimIBD(x, ibdpattern, ids = NULL, markers = NULL, seed = NULL)

Arguments

x A ped object.
ibdpattern A genomeSim() object, typically created by ibdsim(). (See Examples).
ids A vector of ID labels. If NULL, all members of x are included.
markers A vector with names or indices of markers attached to x.
seed An integer seed for the random number generator.

realised 19

Details

It should be noted that the only random part of this function is the selection of founder alleles for
each marker. Given those, all other genotypes in the pedigree are determined by the underlying IBD
pattern.

Value

An object similar to x. but with simulated genotypes.

See Also

ibdsim()

Examples

A pedigree with two siblings
x = nuclearPed(2)

Attach 3 linked markers on chromosome 1
pos = c(20, 50, 70) # marker positions in megabases
mlist = lapply(pos, function(i)

marker(x, alleles = letters[1:10], chrom = 1, posMb = i))
x = setMarkers(x, mlist)

Simulate the underlying IBD pattern in the pedigree
s = ibdsim(x, 1, map = uniformMap(M = 1, chrom = 1), seed = 123)[[1]]

Simulate genotypes for the sibs conditional on the given IBD pattern
profileSimIBD(x, s, ids = 3:4, seed = 123)

With a different seed
profileSimIBD(x, s, ids = 3:4, seed = 124)

realised Realised relatedness

Description

Compute the realised values of various pedigree coefficients, from simulated data. The current
implementation covers inbreeding coefficients for single pedigree members, and kinship, kappa
and condensed identity coefficients for pairwise relationships.

Usage

realisedInbreeding(sims, id = NULL)

realisedKinship(sims, ids = NULL)

20 realised

realisedKappa(sims, ids = NULL)

realisedIdentity(sims, ids = NULL)

Arguments

sims A list of genome simulations, as output by ibdsim().
id, ids A vector with one or two ID labels.

Details

The inbreeding coefficient f of a pedigree member is defined as the probability of autozygosity
(homozygous for alleles that are identical by descent) in a random autosomal locus. Equivalently,
the inbreeding coefficient is the expected autozygous proportion of the autosomal chromosomes.

The realised inbreeding coefficient fR in a given individual is the actual fraction of the autosomes
covered by autozygous segments. Because of the stochastic nature of meiotic recombination, this
may deviate substantially from the pedigree-based expectation.

Similarly, the pedigree-based IBD coefficients κ0, κ1, κ2 of noninbred pairs of individuals have
realised counterparts. For any given pair of individuals we define ki to be the actual fraction of the
autosome where the individuals share exactly i alleles IBD, where i = 0, 1, 2.

Finally, we can do the same thing for each of the nine condensed identity coefficients of Jacquard.
For each i = 1, ..., 9 we define Di the be the fraction of the autosome where a given pair of
individuals are in identity state i. This uses the conventional ordering of the nine condensed identity
states; see for instance the ribd GitHub page.

Examples

Realised IBD coefficients between full siblings
x = nuclearPed(2)
s = ibdsim(x, N = 2) # increase N
realisedKappa(s, ids = 3:4)

###########

Realised inbreeding coefficients, child of first cousins
x = cousinPed(1, child = TRUE)
s = ibdsim(x, N = 2) # increase N
realisedInbreeding(s, id = 9)

Same data: realised kinship coefficients between the parents
realisedKinship(s, ids = parents(x, 9))

###########

Realised identity coefficients after full sib mating
x = fullSibMating(1)
s = ibdsim(x, N = 2) # increase N
realisedIdentity(s, ids = 5:6)

https://github.com/magnusdv/ribd

segmentStats 21

segmentStats Summary statistics for identified segments

Description

Compute summary statistics for segments identified by findPattern().

Usage

segmentStats(x, quantiles = c(0.025, 0.5, 0.975), returnAll = FALSE)

Arguments

x A list of matrices produced with findPattern().

quantiles A vector of quantiles to include in the summary.

returnAll A logical, by default FALSE. If TRUE, the output includes a vector allSegs
containing the lengths of all segments in all simulations.

Value

A list containing a data frame perSim, a matrix summary and (if returnAll is TRUE) a vector
allSegs.

Variables used in the output:

• Count: The total number of segments in a simulation

• Total: The total sum of the segment lengths in a simulation

• Average: The average segment lengths in a simulation

• Shortest: The length of the shortest segment in a simulation

• Longest: The length of the longest segment in a simulation

• Overall (only in summary): A summary of all segments from all simulations

See Also

findPattern()

Examples

x = nuclearPed(3)
sims = ibdsim(x, N = 2, map = uniformMap(M = 2), model = "haldane", seed = 1729)

Segments where all siblings carry the same allele
segs = findPattern(sims, pattern = list(carriers = 3:5))

Summarise
segmentStats(segs)

22 zeroIBD

uniformMap Uniform recombination maps

Description

Create a uniform recombination map of a given length.

Usage

uniformMap(Mb = NULL, cM = NULL, M = NULL, cmPerMb = 1, chrom = 1)

Arguments

Mb Map length in megabases.

cM Map length in centiMorgan.

M Map length in Morgan.

cmPerMb A positive number; the cM/Mb ratio.

chrom A chromosome label.

Value

An object of class chromMap, which is a list of two matrices, named "male" and "female".

See Also

loadMap(), customMap()

Examples

uniformMap(M = 1)

m = uniformMap(Mb = 1, cM = 2:3)

zeroIBD Probability of zero IBD

Description

Estimate the probability of no IBD sharing in a pairwise relationship.

Usage

zeroIBD(sims, ids = NULL, threshold = 0)

zeroIBD 23

Arguments

sims A list of genome simulations, as output by ibdsim().

ids A vector with two ID labels. If NULL (default), these are deduced from the
sims object.

threshold A nonnegative number (default:0). Only IBD segments longer than this are
included in the computation.

Value

A list with the following two entries:

• zeroprob: The fraction of sims in which ids have no IBD sharing

• stErr: The standard error of zeroprob

Examples

###
The following example computes the probability of
no IBD sharing between a pair of fourth cousins.
We also show how the probability is affected by
truncation, i.e., ignoring short segments.
###

Define the pedigree
x = cousinPed(4)
cous = leaves(x)

Simulate (increase N!)
s = ibdsim(x, N = 10)

Probability of zero ibd segments. (By default all segs are used)
zeroIBD(s, ids = cous)

Re-compute with positive threshold
zeroIBD(s, ids = cous, threshold = 1)

Index

convertPos, 2
customMap, 3
customMap(), 14, 22

estimateCoeffs, 4
estimateIdentity (estimateCoeffs), 4
estimateInbreeding (estimateCoeffs), 4
estimateKappa (estimateCoeffs), 4
estimateKinship (estimateCoeffs), 4
estimateTwoLocusIdentity

(estimateCoeffs), 4
estimateTwoLocusInbreeding

(estimateCoeffs), 4
estimateTwoLocusKappa (estimateCoeffs),

4
estimateTwoLocusKinship

(estimateCoeffs), 4
extractIds, 7

findPattern, 8
findPattern(), 21

haploDraw, 9

ibdsim, 11
ibdsim(), 3, 5, 8, 16–20, 23
ibdsim2, 13

loadMap, 13
loadMap(), 3, 11, 12, 15, 22

mapLen (maplengths), 14
maplengths, 14

pedtools::ped(), 5, 11
physRange (maplengths), 14
plotSegmentDistribution, 16
profileSimIBD, 18

realised, 19
realisedIdentity (realised), 19

realisedInbreeding (realised), 19
realisedKappa (realised), 19
realisedKinship (realised), 19

segmentStats, 21
segmentStats(), 9
set.seed(), 11

uniformMap, 22
uniformMap(), 3, 11, 12, 14, 15

zeroIBD, 22

24

	convertPos
	customMap
	estimateCoeffs
	extractIds
	findPattern
	haploDraw
	ibdsim
	ibdsim2
	loadMap
	maplengths
	plotSegmentDistribution
	profileSimIBD
	realised
	segmentStats
	uniformMap
	zeroIBD
	Index

