FMAT: The Fill-Mask Association Test

The Fill-Mask Association Test ('FMAT') is an integrative and probability-based method using Masked Language Models to measure conceptual associations (e.g., attitudes, biases, stereotypes, social norms, cultural values) as propositions in natural language. Supported language models include 'BERT' <doi:10.48550/arXiv.1810.04805> and its variants available at 'Hugging Face' <>. Methodological references and installation guidance are provided at <>.

Version: 2024.5
Depends: R (≥ 4.0.0)
Imports: PsychWordVec, reticulate, data.table, stringr, forcats, psych, irr, glue, cli, purrr, plyr, dplyr, tidyr
Suggests: bruceR, text, nlme
Published: 2024-05-19
Author: Han-Wu-Shuang Bao ORCID iD [aut, cre]
Maintainer: Han-Wu-Shuang Bao <baohws at>
License: GPL-3
NeedsCompilation: no
SystemRequirements: Python (>= 3.9.0)
Materials: README NEWS
CRAN checks: FMAT results


Reference manual: FMAT.pdf


Package source: FMAT_2024.5.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): FMAT_2024.5.tgz, r-oldrel (arm64): FMAT_2024.5.tgz, r-release (x86_64): FMAT_2024.5.tgz, r-oldrel (x86_64): FMAT_2024.5.tgz
Old sources: FMAT archive


Please use the canonical form to link to this page.