Estimating quantiles

Thomas Lumley
July 17, 2021

The pth quantile is defined as the value where the estimated cumulative distribution function is equal to p. As with quantiles in unweighted data, this definition only pins down the quantile to an interval between two observations, and a rule is needed to interpolate. As the help for the base R function `quantile` explains, even before considering sampling weights there are many possible rules.

Rules in the `svyquantile()` function can be divided into three classes

- Discrete rules, following types 1 to 3 in `quantile`
- Continuous rules, following types 4 to 9 in `quantile`
- A rule proposed by Shah & Vaish (2006) and used in some versions of SUDAAN

Discrete rules

These are based on the discrete empirical CDF that puts weight proportional to the weight w_k on values x_k.

$$\hat{F}(x) = \frac{\sum \{x_i \leq x\} w_i}{\sum w_i}$$

The mathematical inverse The mathematical inverse $\hat{F}^{-1}(p)$ of the CDF is the smallest x such that $F(x) \geq p$. This is rule `hf1` and `math` and in equally-weighted data gives the same answer as `type=1` in `quantile`.

The primary-school median The school definition of the median for an even number of observations is the average of the middle two observations. We extend this to say that the pth quantile is $q_{low} = \hat{F}^{-1}(p)$ if $\hat{F}(q_{low}) = p$ and otherwise is the the average of $\hat{F}^{-1}(p)$ and the next higher observation. This is `school` and `hf2` and is the same as `type=2` in `quantile`.

Nearest even order statistic The pth quantile is whichever of $\hat{F}^{-1}(p)$ and the next higher observation is at an even-numbered position when the distinct data values are sorted. This is `hf3` and is the same as `type=3` in `quantile`.

1
Continuous rules

These construct the empirical CDF as a piecewise-linear function and read off the quantile. They differ in the choice of points to interpolate. Hyndman & Fan describe these as interpolating the points \((p_k, x_k)\) where \(p_k\) is defined in terms of \(k\) and \(n\). For weighted use they have been redefined in terms of the cumulative weights \(C_k = \sum_{i \leq k} w_i\), the total weight \(C_n = \sum w_i\), and the weight \(w_k\) on the \(k\)th observation.

<table>
<thead>
<tr>
<th>(q) rule</th>
<th>Hyndman & Fan</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>hf4</td>
<td>(p_k = k/n)</td>
<td>(p_k = C_k/C_n)</td>
</tr>
<tr>
<td>hf5</td>
<td>(p_k = (k - 0.5)/n)</td>
<td>(p_k = (C_k - w_k)/C_n)</td>
</tr>
<tr>
<td>hf6</td>
<td>(p_k = k/(n + 1))</td>
<td>(p_k = C_k/(C_n + w_n))</td>
</tr>
<tr>
<td>hf7</td>
<td>(p_k = (k - 1)/(n - 1))</td>
<td>(p_k = C_{k-1}/C_{n-1})</td>
</tr>
<tr>
<td>hf8</td>
<td>(p_k = (k - 1/3)/(n + 2/3))</td>
<td>(p_k = (C_k - w_k/3)/(C_n + w_n/3))</td>
</tr>
<tr>
<td>hf9</td>
<td>(p_k = (k - 3/8)/(n + 1/4))</td>
<td>(p_k = (C_k - 3w_k/8)/(C_n + w_n/4))</td>
</tr>
</tbody>
</table>

Shah & Vaish

This rule is related to hf6, but it is discrete and more complicated. First, define \(w^*_i = w_i/n/C_n\), so that \(w^*_i\) sum to the sample size rather than the population size, and \(C^*_k\) as partial sums of \(w^*_k\). Now define the estimated CDF by

\[
\hat{F}(x_k) = \frac{1}{n+1} \left(\frac{C^*_k + 1/2 - w_k/2}{w_k/2} \right)
\]

and take \(\hat{F}^{-1}(p)\) as the \(p\)th quantile.

Other options

It would be possible to redefine all the continuous estimators in terms of \(w^*\), so that type 8, for example, would use

\[
p_k = \frac{(C^*_k - 1/3)/(C^*_n + 2/3)}{w_k/3}/(C^*_n + 2/3).
\]

Or a compromise, eg using \(w^*_k\) in the numerator and numbers in the denominator, such as

\[
p_k = \frac{(C^*_k - w^*_k/3)/(C^*_n + w^*_n/3)}{w_k}/(C^*_n + w^*_n/4).
\]

Comparing these would be a worthwhile... an interesting... a research question for simulation.