mvcauchy: Multivariate Cauchy Distribution

The Cauchy distribution is a special case of the t distribution when the degrees of freedom are equal to 1. The functions are related to the multivariate Cauchy distribution and include simulation, computation of the density, maximum likelihood estimation, contour plot of the bivariate Cauchy distribution, and discriminant analysis. References include: Nadarajah S. and Kotz S. (2008). "Estimation methods for the multivariate t distribution". Acta Applicandae Mathematicae, 102(1): 99–118. <doi:10.1007/s10440-008-9212-8>, and Kanti V. Mardia, John T. Kent and John M. Bibby (1979). "Multivariate analysis", ISBN:978-0124712522. Academic Press, London.

Version: 1.1
Depends: R (≥ 4.0)
Imports: graphics, grDevices, Rfast, Rfast2
Published: 2024-06-04
DOI: 10.32614/CRAN.package.mvcauchy
Author: Michail Tsagris [aut, cre], Christos Adam [ctb]
Maintainer: Michail Tsagris <mtsagris at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: mvcauchy results


Reference manual: mvcauchy.pdf


Package source: mvcauchy_1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mvcauchy_1.1.tgz, r-oldrel (arm64): mvcauchy_1.1.tgz, r-release (x86_64): mvcauchy_1.1.tgz, r-oldrel (x86_64): mvcauchy_1.1.tgz
Old sources: mvcauchy archive


Please use the canonical form to link to this page.