Package ‘heplots’
April 18, 2015

Type Package
Title Visualizing Hypothesis Tests in Multivariate Linear Models
Version 1.0-15
Date 2015-04-15
Author John Fox [aut], Michael Friendly [aut, cre], Georges Monette [ctb]
Maintainer Michael Friendly <friendly@yorku.ca>
Depends R (>= 2.10), graphics, stats, car
Imports MASS
Suggests rgl, candisc, effects, reshape, gplots, nlme, lattice,
 reshape2, corrgram, FRB, animation
LazyLoad yes
LazyData yes
Description Provides HE plot functions for visualizing hypothesis tests in multivariate linear models. They represent sums-of-squares-and-products matrices for linear hypotheses and for error using ellipses (in two dimensions) and ellipsoids (in three dimensions).
License GPL (>= 2)
URL http://datavis.ca/R/index.php#heplots
Repository CRAN
Repository/R-Forge/Project heplots
Repository/R-Forge/Revision 186
Repository/R-Forge/DateTimeStamp 2015-04-15 20:53:05
Date/Publication 2015-04-18 17:19:44
NeedsCompilation no

R topics documented:

 heplots-package .. 2
 Adopted .. 4
 arrow3d .. 6
heplots-package

Visualizing Hypothesis Tests in Multivariate Linear Models

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bees</td>
<td>7</td>
</tr>
<tr>
<td>coefplot</td>
<td>9</td>
</tr>
<tr>
<td>cross3d</td>
<td>11</td>
</tr>
<tr>
<td>ellipse3d.axes</td>
<td>11</td>
</tr>
<tr>
<td>etasq</td>
<td>13</td>
</tr>
<tr>
<td>FootHead</td>
<td>14</td>
</tr>
<tr>
<td>gsorth</td>
<td>16</td>
</tr>
<tr>
<td>Headache</td>
<td>17</td>
</tr>
<tr>
<td>heplot</td>
<td>19</td>
</tr>
<tr>
<td>heplot1d</td>
<td>25</td>
</tr>
<tr>
<td>heplot3d</td>
<td>28</td>
</tr>
<tr>
<td>Hernior</td>
<td>32</td>
</tr>
<tr>
<td>interpPlot</td>
<td>34</td>
</tr>
<tr>
<td>label.ellipse</td>
<td>37</td>
</tr>
<tr>
<td>mark.H0</td>
<td>39</td>
</tr>
<tr>
<td>MockJury</td>
<td>40</td>
</tr>
<tr>
<td>NLSY</td>
<td>42</td>
</tr>
<tr>
<td>Oslo</td>
<td>43</td>
</tr>
<tr>
<td>pairs.mlm</td>
<td>45</td>
</tr>
<tr>
<td>Plastic</td>
<td>47</td>
</tr>
<tr>
<td>Pottery2</td>
<td>48</td>
</tr>
<tr>
<td>Probe</td>
<td>50</td>
</tr>
<tr>
<td>RatWeight</td>
<td>51</td>
</tr>
<tr>
<td>ReactTime</td>
<td>53</td>
</tr>
<tr>
<td>robmlm</td>
<td>54</td>
</tr>
<tr>
<td>Rohwer</td>
<td>58</td>
</tr>
<tr>
<td>RootStock</td>
<td>59</td>
</tr>
<tr>
<td>Sake</td>
<td>60</td>
</tr>
<tr>
<td>schooldata</td>
<td>62</td>
</tr>
<tr>
<td>Skulls</td>
<td>63</td>
</tr>
<tr>
<td>SocGrades</td>
<td>65</td>
</tr>
<tr>
<td>statList</td>
<td>66</td>
</tr>
<tr>
<td>termMeans</td>
<td>68</td>
</tr>
<tr>
<td>trans.colors</td>
<td>69</td>
</tr>
<tr>
<td>VocabGrowth</td>
<td>70</td>
</tr>
<tr>
<td>WeightLoss</td>
<td>72</td>
</tr>
</tbody>
</table>

Index

75
heplots-package

Description

The heplots package provides functions for visualizing hypothesis tests in multivariate linear models (MANOVA, multivariate multiple regression, MANCOVA, and repeated measures designs). They represent sums-of-squares-and-products matrices for linear hypotheses and for error using ellipses (in two dimensions), ellipsoids (in three dimensions), or by line segments in one dimension. See Fox, Friendly and Monette (2007) for a brief introduction and Friendly, Monette and Fox (2013) for a general discussion of the role of elliptical geometry in statistical understanding.

The package also provides a collection of data sets illustrating a variety of multivariate linear models of the types listed above, together with graphical displays.

Several tutorial vignettes are also included. See vignette(package="heplots").

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>heplots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0-15</td>
</tr>
<tr>
<td>Date</td>
<td>2015-04-15</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2), GPL version 2 or newer</td>
</tr>
</tbody>
</table>

The graphical functions contained here all display multivariate model effects in variable (data) space, for one or more response variables (or contrasts among response variables in repeated measures designs).

heplot constructs two-dimensional HE plots for model terms and linear hypotheses for pairs of response variables in multivariate linear models.

heplot3d constructs analogous 3D plots for triples of response variables.

pairs.mlm constructs a “matrix” of pairwise HE plots.

heplot1d constructs 1-dimensional analogs of HE plots for model terms and linear hypotheses for single response variables.

For repeated measure designs, between-subject effects and within-subject effects must be plotted separately, because the error terms (E matrices) differ. For terms involving within-subject effects, these functions carry out a linear transformation of the matrix Y of responses to a matrix Y M, where M is the model matrix for a term in the intra-subject design and produce plots of the H and E matrices in this transformed space. The vignette repeated describes these graphical methods for repeated measures designs.

The related car-package package calculates Type II and Type III tests of multivariate linear hypotheses using the Anova and linearHypothesis functions.

The candisc-package package provides functions for visualizing effects for MLM model terms in a low-dimensional canonical space that shows the largest hypothesis relative to error variation. The candisc package now also includes related methods for canonical correlation analysis.

The heplots package also contains a large number of multivariate data sets with examples of analyses and graphic displays. Use data(package="heplots") to see the current list.
Adopted

Author(s)

John Fox, Michael Friendly, and Georges Monette

Maintainer: Michael Friendly, <friendly@yorku.ca>, http://datavis.ca

References

See Also

- Anova, `linearHypothesis` for Anova.mlm computations and tests
- `candisc-package` for reduced-rank views in canonical space
- `manova` for a different approach to testing effects in MANOVA designs

Description

Data are a subset from an observational, longitudinal, study on adopted children. Is child’s intelligence related to intelligence of the biological mother and the intelligence of the adoptive mother?

The child’s intelligence was measured at age 2, 4, 8, and 13 for this sample. How does intelligence change over time, and how are these changes related to intelligence of the birth and adoptive mother?

Usage

`adopted`
Adopted

Format

A data frame with 62 observations on the following 6 variables.

- **amed**: adoptive mother’s years of education (proxy for her IQ)
- **bmiq**: biological mother’s score on IQ test
- **Age2IQ**: IQ of child at age 2
- **Age4IQ**: IQ of child at age 4
- **Age8IQ**: IQ of child at age 8
- **Age13IQ**: IQ of child at age 13

Source

This data set is identical to ex1605 in the Sleuth2 package.

References

See Also

- ex1605

Examples

```r
# Treat as multivariate regression problem
Adopted.mod <- lm(cbind(Age2IQ, Age4IQ, Age8IQ, Age13IQ) ~ AMED + BMIQ, data=Adopted)
Adopted.mod

require(car)
# test overall multivariate regression
linearHypothesis(Adopted.mod, c("AMED","BMIQ"))

# show separate linear regressions
par <- par(mfcol=c(2,4), mar=c(4,4,2,2)+.1)
for (i in 3:6) {
dataEllipse(as.matrix(Adopted[,c(1,i)]),col="black", levels=0.68, ylim=c(70,140))
abline(lm(Adopted[,1] ~ Adopted[,1]), col="red", lwd=2)
dataEllipse(as.matrix(Adopted[,c(2,i)]),col="black", levels=0.68, ylim=c(70,140))
abline(lm(Adopted[,2] ~ Adopted[,2]), col="red", lwd=2)
abline(a=0,b=1, lty=1, col="blue")
}
par(op)

# between-S (MMReg) plots
```
heplot(Adopted.mod, hypotheses=list("Reg"=c("AMED", "BMIQ")), main="IQ scores of adopted children: MMReg")

pairs(Adopted.mod, hypotheses=list("Reg"=c("AMED", "BMIQ")))

heplot3d(Adopted.mod, hypotheses=list("Reg"=c("AMED", "BMIQ")), col = c("red", "blue", "black", "gray"), wire=FALSE)

Treat IQ at different ages as a repeated measure factor
within-S models & plots
Age <- data.frame(Age=ordered(c(2,4,8,13)))
anova(Adopted.mod, idata=Age, idesign=~Age, test="Roy")

within-S plots
heplot(Arranged.mod, idata=Age, idesign=~Age, iterm="Age", cex=1.25, cex.lab=1.4, fill=c(FALSE, TRUE),
hypotheses=list("Reg"=c("AMED", "BMIQ"))
)

arrow3d

Draw a 3D Arrow in an RGL Scene

Description

Draws a 3D arrow in an rgl scene with barbs at the arrow head

Usage

```r
arrow3d(p0 = c(0, 0, 0), p1 = c(1, 1, 1), barblen, s = 0.05, theta = pi/6, n = 3, ...)
```

Arguments

- `p0` Initial point (tail of arrow)
- `p1` Ending point (head of arrow)
- `barblen` Length of each barb, in data units
- `s` Length of barb as fraction of line length (unless barblen is specified)
- `theta` Opening angle of barbs
- `n` Number of barbs
- `...` Args passed to lines3d for line styling, e.g., color, lwd, etc. See `material3d`.

Value

Returns (invisibly): integer ID of the line added to the scene

Author(s)

Barry Rowlingson, posted to R-help, 1/10/2010
Captive and maltreated bees

Description

Pabalan, Davey and Packe (2000) studied the effects of captivity and maltreatment on reproductive capabilities of queen and worker bees in a complex factorial design.

Bees were placed in a small tube and either held captive (CAP) or shaken periodically (MAL) for one of 5, 7.5, 10, 12.5 or 15 minutes, after which they were sacrificed and two measures: ovarian development (Iz) and ovarian reabsorption (Iy), were taken. A single control group was measured with no such treatment, i.e., at time 0; there are n=10 per group.

The design is thus nearly a three-way factorial, with factors caste (Queen, Worker), treat (CAP, MAL) and time, except that there are only 11 combinations of Treatment and Time; we call these `trtime` below.

Usage

```r
data(Bees)
```

Format

A data frame with 246 observations on the following 6 variables.

- `caste` a factor with levels Queen Worker
- `treat` a factor with levels "" CAP MAL
- `time` an ordered factor: time of treatment
- `Iz` an index of ovarian development
- `Iy` an index of ovarian reabsorption
- `trtime` a factor with levels 0 CAP05 CAP07 CAP10 CAP12 CAP15 MAL05 MAL07 MAL10 MAL12 MAL15
Details

Models for the three-way factorial design, using the formula $\text{cbind}(Iz,Iy) ~ \text{caste}\times\text{treat}\times\text{time}$ ignore the control condition at time==0, where treat==NA.

To handle the additional control group at time==0, while separating the effects of Treatment and Time, 10 contrasts can be defined for the trtime factor in the model $\text{cbind}(Iz,Iy) ~ \text{caste}\times\text{trtime}$ See demo(bees.contrasts) for details.

In the heplot examples below, the default size="evidence" displays are too crowded to interpret, because some effects are so highly significant. The alternative effect-size scaling, size="effect", makes the relations clearer.

Source

References

Examples

data(Bees)
require(car)

3-way factorial, ignoring 0 group
bees.mod <- lm(cbind(Iz,Iy) ~ caste$treat$time, data=Bees)
Anova(bees.mod)

op<-palette(c(palette()[1:4],"brown","magenta","olivedrab","darkgray"))
heplot(bees.mod, xlab="Iz: Ovarian development", ylab="Iz: Ovarian reabsorption", main="Bees: ~caste$treat$time")
heplot(bees.mod, xlab="Iz: Ovarian development", ylab="Iz: Ovarian reabsorption", main="Bees: ~caste$treat$time", size="effect")

two-way design, using trtime
bees.mod1 <- lm(cbind(Iz,Iy) ~ caste$trtime, data=Bees)
Anova(bees.mod1)

heplot(bees.mod1, xlab="Iz: Ovarian development", ylab="Iz: Ovarian reabsorption", main="Bees: ~caste$trtime")
heplot(bees.mod1, xlab="Iz: Ovarian development", ylab="Iz: Ovarian reabsorption", main="Bees: ~caste$trtime",size="effect")
palette(op)

effect plots for separate responses
if(require/effects)) {
bees.lm1 <-lm(Iy ~ treat$caste$time, data=Bees)
bees.lm2 <-lm(Iz ~ treat$caste$time, data=Bees)
coefplot

Coefficient plots for Multivariate Linear Models

Description

Displays confidence ellipses for all parameters in an multivariate linear model, for a given pair of variables. As such, it is a generalization of confidenceEllipse.

Usage

coefplot(object, ...)

S3 method for class 'mlm'
coefplot(object, variables = 1:2, parm = NULL,
 df = NULL, level = 0.95, intercept = FALSE,
 Scheffe = FALSE, bars = TRUE,
 fill = FALSE, fill.alpha = 0.2,
 labels = !add, label.pos = NULL,
 xlab, ylab,
 xlim = NULL, ylim = NULL,
 axes = TRUE, main = "", add = FALSE,
 lwd = 1, lty = 1, pch = 19, col = palette(),
 cex = 2, cex.label = 1.5,
 lty.zero = 3, col.zero = 1, pch.zero = '+',
 verbose = FALSE, ...)

Arguments

object A multivariate linear model, such as fit by lm()

... Other parameters passed to methods

variables Response variables to plot, given as their indices or names

parm Parameters to plot

df Degrees of freedom for hypothesis tests

level Confidence level

intercept logical. Include the intercept?
Scheffe If TRUE, confidence intervals for all parameters have Scheffe coverage, otherwise, individual coverage.
bars Draw univariate confidence intervals for each of the variables?
fill a logical value or vector. TRUE means the confidence ellipses will be filled.
fill.alpha
labels Labels for the confidence ellipses
label.pos Positions of the labels for each ellipse. See label.ellipse
xlab, ylab x, y axis labels
xlim, ylim Axis limits
axes Draw axes?
main Plot title
add logical. Add to an existing plot?
lwd Line widths
lty Line types
pch Point symbols for the parameter estimates
col Colors for the confidence ellipses, points, lines
cex Character size for points showing parameter estimates
cex.label Character size for ellipse labels
lty.zero, col.zero, pch.zero Line type, color and point symbol for horizontal and vertical lines at 0, 0.
verbose logical. Print parameter estimates and variance-covariance for each parameter?

Value

Returns invisibly a list of the coordinates of the ellipses drawn

Author(s)

Michael Friendly

See Also

certaintyEllipse.

Examples

mod <- lm(cbind(SAT,PPVT,Raven)~n+s+ns, data=Rohwer)
coefplot(mod, lwd=2, main="Bivariate coefficient plot for SAT and PPVT", fill=TRUE)
coefplot(mod, add=TRUE, Scheffe=TRUE, fill=TRUE)

coefplot(mod, var=c(1,3))

mod1 <- lm(cbind(SAT,PPVT,Raven)~n+s+ns+na+ss, data=Rohwer)
coefplot(mod1, lwd=2, fill=2 !=(1:5),
main="Bivariate 68% coefficient plot for SAT and PPVT", level=0.68)
cross3d

Description

Draws a 3D cross or axis vectors in an rgl scene.

Usage

cross3d(centre = rep(0, 3), scale = rep(1, 3), ...)

Arguments

- **centre**: A scalar or vector of length 3, giving the centre of the 3D cross
- **scale**: A scalar or vector of length 3, giving the lengths of the arms of the 3D cross
- **...**: Other arguments, passed on to `segments3d`

Value

Used for its side-effect, but returns (invisibly) a 6 by 3 matrix containing the end-points of three axes, in pairs.

Author(s)

Michael Friendly

See Also

`segments3d`

ellipse3d.axes

Description

A function to draw the major axes of a 3D ellipsoid from a correlation, covariance or sums of squares and cross products matrix.

Usage

elipse3d.axes(x, centre = c(0, 0, 0), scale = c(1, 1, 1),
 level = 0.95, t = sqrt(qchisq(level, 3)), which = 1:3,
 labels = TRUE, label.ends=c(2,4,6), ...)

Arguments

x A square positive definite matrix at least 3x3 in size. It will be treated as the correlation or covariance of a multivariate normal distribution.

centre The center of the ellipse

scale If x is a correlation matrix, then the standard deviations of each parameter can be given in the scale parameter. This defaults to c(1, 1, 1), so no rescaling will be done.

level The confidence level of a simultaneous confidence region. The default is 0.95, for a 95% region. This is used to control the size of the ellipsoid.

t The size of the ellipsoid may also be controlled by specifying the value of a t-statistic on its boundary.

which This parameter selects which variables from the object will be plotted. The default is the first 3.

labels Either a logical value, a character string, or a character vector of length 3. If TRUE, the default, the axes are labeled PC1, PC2, PC3. If a single character string, the digits 1, 2, 3 are pasted on the end.

label.ends A vector of length 3 indicating which ends of the axes should be labeled, corresponding to a selection of rows of the 6 x 3 matrix of axes end points. Default: c(2, 4, 6).

... Other arguments passed to segments3d and text3d.

Value

Returns a 6 x 3 matrix containing the end points of the three axis lines in pairs by rows.

Author(s)

Michael Friendly

See Also

segments3d, text3d, ellipse3d

Examples

data(iris)
iris3 <- iris[,1:3]
cov <- cov(iris3)
mu <- colMeans(iris3)
col <- c("blue", "green", "red")[iris$Species]

library(rgl)
plot3d(iris3, type="s", size=0.4, col=col, cex=2, box=FALSE, aspect="iso")
plot3d(ellipse3d(cov, centre=mu, level=0.68), col="gray", alpha=0.2, add = TRUE)

axes <- ellipse3d.axes(cov, centre=mu, level=0.68, color="gray", lwd=2)
Measures of Partial Association (Eta-squared) for Linear Models

Description

Calculates partial eta-squared for linear models or multivariate analogs of eta-squared (or R^2), indicating the partial association for each term in a multivariate linear model. There is a different analog for each of the four standard multivariate test statistics: Pillai’s trace, Hotelling-Lawley trace, Wilks’ Lambda and Roy’s maximum root test.

Usage

\texttt{etasq(x, \ldots)}

\texttt{## S3 method for class 'lm'}
\texttt{etasq(x, anova = FALSE, partial = TRUE, \ldots)}

\texttt{## S3 method for class 'mlm'}
\texttt{etasq(x, \ldots)}

\texttt{## S3 method for class 'Anova.mlm'}
\texttt{etasq(x, anova = FALSE, \ldots)}

Arguments

- \texttt{x} \quad \text{A } \text{lm, mlm or Anova.mlm object}
- \texttt{anova} \quad \text{A logical, indicating whether the result should also contain the test statistics produced by Anova()}
- \texttt{partial} \quad \text{A logical, indicating whether to calculate partial or classical eta^2}
- \ldots \quad \text{Other arguments passed down to Anova}

Details

For univariate linear models, classical $\eta^2 = SSH / SST$ and partial $\eta^2 = SSH / (SSH + SSE)$. These are identical in one-way designs.

Partial eta-squared describes the proportion of total variation attributable to a given factor, partialling out (excluding) other factors from the total nonerror variation. These are commonly used as measures of effect size or measures of (non-linear) strength of association in ANOVA models.

All multivariate tests are based on the $s = \min(p, df_k)$ latent roots of HE^{-1}. The analogous multivariate partial η^2 measures are calculated as:

- **Pillai’s trace (V)** $\eta^2 = V / s$
- **Hotelling-Lawley trace (T)** $\eta^2 = T / (T + s)$
- **Wilks’ Lambda (L)** $\eta^2 = L^{1/s}$
- **Roy’s maximum root (R)** $\eta^2 = R / (R + 1)$
Value

When anova=FALSE, a one-column data frame containing the eta-squared values for each term in the model.

When anova=TRUE, a 5-column (lm) or 7-column (mlm) data frame containing the eta-squared values and the test statistics produced by print.Anova() for each term in the model.

Author(s)

Michael Friendly

References

See Also

Anova

Examples

data(Soils) # from car package
soils.mod <- lm(cbind(pH,N,Dens,P,Ca,Mg,K,Na,Conduc) ~ Block + Contour*Depth, data=Soils) #Anova(soils.mod)
etasq(Anova(soils.mod))
etasq(soils.mod) # same
etasq(Anova(soils.mod), anova=TRUE)
etasq(soils.mod, test="Wilks")
etasq(soils.mod, test="Hotelling")

FootHead

Head measurements of football players

Description

Data collected as part of a preliminary study examining the relation between football helmet design and neck injuries. There are 30 subjects in each of three groups: High school football players, college players and non-football players.

Usage

data(FootHead)
FootHead

Format
A data frame with 90 observations on the following 7 variables.
group a factor with levels High school College Non-football
width a numeric vector: head width at widest dimension
circum a numeric vector: head circumference
front.back a numeric vector: front to back distance at eye level
eye.top a numeric vector: eye to top of head
ear.top a numeric vector: ear to top of head
jaw a numeric vector: jaw width

Source

Examples
data(FootHead)
str(FootHead)
require(car)

use Helmert contrasts for group
contrasts(FootHead$group) <- contr.helmert
contrasts(FootHead$group)

foot.mod <- lm(cbind(width, circum, front.back, eye.top, ear.top, jaw)-group, data=FootHead)
Manova(foot.mod)

show the HE plot for the first two variables
heplot(foot.mod, main="HE plot for width and circumference", fill=TRUE, col=c("red", "blue"))

show it with tests of Helmert contrasts
heplot(foot.mod, hypotheses=list("group.1"="group1","group.2"="group2"),
col=c("red", "blue", "green3", "green3"),
main="HE plot with orthogonal Helmert contrasts")

show all pairwise HE plots
pairs(foot.mod)

... with tests of Helmert contrasts
pairs(foot.mod, hypotheses=list("group.1"="group1","group.2"="group2"),
col=c("red", "blue", "green3", "green3"), hyp.labels=FALSE)

see that the hypothesis for groups really is 2D
heplot3d(foot.mod, variables=c(1,2,6),
hypotheses=list("group.1"="group1","group.2"="group2"),
col=c("red", "blue", "green3", "green3"), wire=FALSE)
gsorth

Orthogonalize successive columns of a data frame or matrix

Description

gsorth uses sequential, orthogonal projections, as in the Gram-Schmidt method, to transform a matrix or numeric columns of a data frame into an uncorrelated set, possibly retaining the same column means and standard deviations as the original.

In statistical applications, interpretation depends on the order of the variables orthogonalized. In multivariate linear models, orthogonalizing the response, Y variables provides the equivalent of step-down tests, where Y1 is tested alone, and then Y2.1, Y3.12, etc. can be tested to determine their additional contributions over the previous response variables.

Similarly, orthogonalizing the model X variables provides the equivalent of Type I tests, such as provided by anova.

Usage

gsorth(y, order, recenter = TRUE, rescale = TRUE, adjnames = TRUE)

Arguments

y A numeric data frame or matrix
order An integer vector specifying the order of and/or a subset of the columns of y to be orthogonalized. If missing, order=1:p where p=ncol(y).
recenter If TRUE, the result has same column means as original; else means = 0 for cols 2:p.
rescale If TRUE, the result has same column standard deviations as original; else sd = residual variance for cols 2:p
adjnames If TRUE, the column names of the result are adjusted to the form Y1, Y2.1, Y3.12, by adding the suffixes '.1', '.12', etc. to the original column names.

Details

The method is equivalent to setting each of columns 2:p to the residuals from a linear regression of that column on all prior columns, i.e.,

z[,j] <- resid(lm(z[,j] ~ as.matrix(z[,1:(j-1)]), data=z)

However, for accuracy and speed the transformation is carried out using the QR decomposition.

Value

Returns a matrix or data frame with uncorrelated columns. Row and column names are copied to the result.

Author(s)

Michael Friendly
See Also

qr.

Examples

```r
GSiris <- gsorth(iris[,1:4])
GSiris <- gsorth(iris, order=1:4)  # same, using order
str(GSiris)
zapsmall(cor(GSiris))
colMeans(GSiris)
# sd(GSiris) -- sd(<matrix>) now deprecated
apply(GSiris, 2, sd)

# orthogonalize Y side
GSiris <- data.frame(gsorth(iris[,1:4]), Species=iris$Species)
iris.mod1 <- lm(as.matrix(GSiris[,1:4]) - Species, data=GSiris)
Anova(iris.mod1)

# orthogonalize X side
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer)
Anova(rohwer.mod)

# type I tests for Rohwer data
Rohwer.orth <- cbind(Rohwer[,1:5], gsorth(Rohwer[, c("n", "s", "ns", "na", "ss")], adjnames=FALSE))
rohwer.mod1 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer.orth)
Anova(rohwer.mod1)
# compare with anova()
anova(rohwer.mod1)

# compare heplots for original Xs and orthogonalized, Type I
heplot(rohwer.mod)
heplot(rohwer.mod)
```

Headache

Treatment of Headache Sufferers for Sensitivity to Noise

Description

A study was conducted investigating the effectiveness of different kinds of psychological treatment on the sensitivity of headache sufferers to noise, described in Hand and Taylor (1987), Study E.

In a pre-post design, 98 patients were first assessed for the volume of noise which they found uncomfortable (U) and definitely uncomfortable (DU). They were then given relaxation training, where they listened to the noise at the DU level and given instruction breathing techniques and the use of visual imagery to distract them from discomfort. One of four treatments was then applied, and all patients were reassessed for the noise volume they considered uncomfortable (U) and definitely uncomfortable (DU).
Usage
data(Headache)

Format
A data frame with 98 observations on the following 6 variables.

type Type of headache, a factor with levels Migrane Tension
treatment Treatment group, a factor with levels T1 T2 T3 Control. See Details
u1 Noise level rated as Uncomfortable, initial measure
du1 Noise level rated as Definitely Uncomfortable, initial measure
u2 Noise level rated as Uncomfortable, final measure
du2 Noise level rated as Definitely Uncomfortable, final measure

Details
The treatments are described as follows:

T1 Listened again to the tone at their initial DU level, for the same amount of time they were able to tolerate it before.
T2 Same as T1, with one additional minute exposure
T3 Same as T2, but were explicitly instructed to use the relaxation techniques
Control These subject experienced no further exposure to the noise tone until the final sensitivity measures were taken

Hand and Taylor described several substantive hypotheses related to the differences among treatments. In the Headache data frame, these have been included as contrasts(Headache$treatment)

Source

Examples
data(Headache)
str(Headache)

basic MLM, specifying between-S effects
headache.mod <- lm(cbind(u1, du1, u2, du2) ~ type * treatment, data=Headache)

basic MLM, specifying between-S effects
headache.mod <- lm(cbind(u1, du1, u2, du2) ~ type * treatment, data=Headache)

test each contrast separately
test each contrast separately

test each contrast separately
heplot

Two-Dimensional HE Plots

Description

This function plots ellipses representing the hypothesis and error sums-of-squares-and-products matrices for terms and linear hypotheses in a multivariate linear model. These include MANOVA models (all explanatory variables are factors), multivariate regression (all quantitative predictors), MANCOVA models, homogeneity of regression, as well as repeated measures designs treated from a multivariate perspective.

Usage

heplot(mod, ...)

S3 method for class 'mlm'
heplot(mod, terms, hypotheses, term.labels = TRUE,
hyp.labels = TRUE, err.label="Error", label.pos=NULL,
variables = 1:2, error.ellipse = !add,
factor.means = !add, grand.mean = !add, remove.intercept = TRUE,
type = c("II", "III", "2", "3"), idata=NULL, idesign=NULL,
icontrasts=c("contr.sum", "contr.poly"),

print(linearHypothesis(headache.mod, hypothesis="treatment1", test="Roy"), SSP=FALSE)
print(linearHypothesis(headache.mod, hypothesis="treatment2", test="Roy"), SSP=FALSE)
print(linearHypothesis(headache.mod, hypothesis="treatment3", test="Roy"), SSP=FALSE)

heplot(headache.mod, variables=c(1,3),
hypotheses=paste("treatment", 1:3, sep=""),
hyp.labels=c("extra.exp", "no.inst", "explicit.inst"),
xlab="u1: Initial sensitivity", ylab="u2: Final sensitivity",
main="Headache data: Unpleasant levels")
abline(0, 1, lty=5, col="gray")

heplot(headache.mod, variables=c(2,4),
hypotheses=paste("treatment", 1:3, sep=""),
xlab="u1: Initial sensitivity", ylab="u2: Final sensitivity",
main="Headache data: Definitely Unpleasant levels")
abline(0, 1, lty=5, col="gray")

pairs(headache.mod)

between-S and within-S tests

idata = expand.grid(level=factor(c("U", "DU")), phase=factor(1:2))
Anova(headache.mod, idata=idata, idesign=~level*phase)
imatrix=NULL, item=NULL, markH0=!=is.null(item),
manova, size = c("evidence", "effect.size"),
level = 0.08, alpha = 0.05, segments = 40,
center.pch = "+", center.cex=2,
col = getOption("heplot.colors",
 c("red", "blue", "black", "darkgreen",
 "darkcyan", "magenta", "brown", "darkgray")),
lty = 2:1, lwd = 1:2,
fill=FALSE, fill.alpha=0.3,
xlab, ylab, main = "", xlim, ylim, axes=TRUE, offset.axes,
add = FALSE, verbose = FALSE, warn.rank = FALSE, ...

Arguments

mod a model object of class "mlm".

terms a logical value or character vector of terms in the model for which to plot hypothesis matrices; if missing or TRUE, defaults to all terms; if FALSE, no terms are plotted.

hypotheses optional list of linear hypotheses for which to plot hypothesis matrices; hypotheses are specified as for the linearHypothesis function in the car package; the list elements can be named, in which case the names are used.

term.labels logical value or character vector of names for the terms to be plotted. If TRUE (the default) the names of the terms are used; if FALSE, term labels are not plotted.

hyp.labels logical value or character vector of names for the hypotheses to be plotted. If TRUE (the default) the names of components of the list of hypotheses are used; if FALSE, hypothesis labels are not plotted.

err.label Label for the error ellipse

label.pos Label position, a vector of integers (in 0:4) or character strings (in c("center", "bottom", "left", "top")) use in labeling ellipses, recycled as necessary. Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the max/min coordinates of the ellipse; the value 0 specifies the centroid of the ellipse object. The default, label.pos=NULL uses the correlation of the ellipse to determine "top" (r>=0) or "bottom" (r<0).

variables indices or names of the two response variables to be plotted; defaults to 1:2.

error.ellipse if TRUE, plot the error ellipse; defaults to TRUE, if the argument add is FALSE (see below).

factor.means logical value or character vector of names of factors for which the means are to be plotted, or TRUE or FALSE; defaults to TRUE, if the argument add is FALSE (see below).

grand.mean if TRUE, plot the centroid for all of the data; defaults to TRUE, if the argument add is FALSE (see below).

remove.intercept if TRUE (the default), do not plot the ellipse for the intercept even if it is in the MANOVA table.

type "type" of sum-of-squares-and-products matrices to compute; one of "II", "III", "2", or "3", where "II" is the default (and "2" is a synonym).
idata

an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details of Anova for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.

idesign

a one-sided model formula using the “data” in idata and specifying the intra-subject design for repeated measure models.

icontrasts

names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly").

imatrix

In lieu of idata and idesign, you can specify the intra-subject design matrix directly via imatrix, in the form of list of named elements. Each element gives the columns of the within-subject model matrix for an intra-subject term to be tested, and must have as many rows as there are responses; the columns of the within-subject model matrix for different terms must be mutually orthogonal. This functionality requires car version 2.0 or later.

iterm

For repeated measures designs, you must specify one intra-subject term (a character string) to select the SSPE (E) matrix used in the HE plot. Hypothesis terms plotted include the iterm effect as well as all interactions of iterm with terms.

markH0

A logical value (or else a list of arguments to mark.H0) used to draw cross-hairs and a point indicating the value of a point null hypothesis. The default is TRUE if iterm is non-NULL.

manova

optional Anova.mlm object for the model; if absent a MANOVA is computed. Specifying the argument can therefore save computation in repeated calls.

size

how to scale the hypothesis ellipse relative to the error ellipse; if "evidence", the default, the scaling is done so that a “significant” hypothesis ellipse at level alpha extends outside of the error ellipse; if "effect.size", the hypothesis ellipse is on the same scale as the error ellipse.

level

equivalent coverage of ellipse for normally-distributed errors, defaults to 0.68.

alpha

significance level for Roy’s greatest-root test statistic; if size="evidence", then the hypothesis ellipse is scaled so that it just touches the error ellipse at the specified alpha level; a larger hypothesis ellipse therefore indicates statistical significance; defaults to 0.05.

segments

number of line segments composing each ellipse; defaults to 40.

center.pch

character to use in plotting the centroid of the data; defaults to "+".

center.cex

size of character to use in plotting the centroid of the data; defaults to 2.

col

a color or vector of colors to use in plotting ellipses; the first color is used for the error ellipse; the remaining colors — recycled as necessary — are used for the hypothesis ellipses. A single color can be given, in which case it is used for all ellipses. For convenience, the default colors for all heplots produced in a given session can be changed by assigning a color vector via options(heplot.colors =c(...). Otherwise, the default colors are c("red", "blue", "black", "darkgreen", "darkcyan", "magenta", "brown", "darkgray").

lty

vector of line types to use for plotting the ellipses; the first is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single line type can be given. Defaults to 2:1.
heplot

lwd vector of line widths to use for plotting the ellipses; the first is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single line width can be given. Defaults to 1:2.

fill A logical vector indicating whether each ellipse should be filled or not. The first value is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single fill value can be given. Defaults to FALSE for backward compatibility. See Details below.

fill.alpha Alpha transparency for filled ellipses, a numeric scalar or vector of values within \([0, 1]\), where 0 means fully transparent and 1 means fully opaque. Defaults to 0.3.

xlab x-axis label; defaults to name of the x variable.

ylab y-axis label; defaults to name of the y variable.

main main plot label; defaults to "".

xlim x-axis limits; if absent, will be computed from the data.

ylim y-axis limits; if absent, will be computed from the data.

axes Whether to draw the x, y axes; defaults to TRUE.

offset.axes proportion to extend the axes in each direction if computed from the data; optional.

add if TRUE, add to the current plot; the default is FALSE. If TRUE, the error ellipse is not plotted.

verbose if TRUE, print the MANOVA table and details of hypothesis tests; the default is FALSE.

warn.rank if TRUE, do not suppress warnings about the rank of the hypothesis matrix when the ellipse collapses to a line; the default is FALSE.

... arguments to pass down to plot, text, and points.

Details

The `heplot` function plots a representation of the covariance ellipses for hypothesized model terms and linear hypotheses (H) and the corresponding error (E) matrices for two response variables in a multivariate linear model (mlm).

The plot helps to visualize the nature and dimensionality response variation on the two variables jointly in relation to error variation that is summarized in the various multivariate test statistics (Wilks' Lambda, Pillai trace, Hotelling-Lawley trace, Roy maximum root). Roy's maximum root test has a particularly simple visual interpretation, exploited in the `size="evidence"` version of the plot. See the description of argument `alpha`.

For a 1 df hypothesis term (a quantitative regressor, a single contrast or parameter test), the H matrix has rank 1 (one non-zero latent root of \(HE^{-1}\)) and the H "ellipse" collapses to a degenerate line.

Typically, you fit a mlm with \(\text{mymlm} \leftarrow \text{lm}(\text{cbind}(y1, y2, y3, \ldots) \sim \text{modelterms})\), and plot some or all of the `modelterms` with `heplot(mymlm, \ldots)` Arbitrary linear hypotheses related to the terms in the model (e.g., contrasts of an effect) can be included in the plot using the `hypotheses` argument. See `linearHypothesis` for details.

For repeated measure designs, where the response variables correspond to one or more variates observed under a within-subject design, between-subject effects and within-subject effects must be
plotted separately, because the error terms (E matrices) differ. When you specify an intra-subject term (iterm), the analysis and HE plots amount to analysis of the matrix Y of responses post-multiplied by a matrix M determined by the intra-subject design for that term. See Friendly (2010) or the vignette("repeated") in this package for an extended discussion and examples.

The related candisc package provides functions for visualizing a multivariate linear model in a low-dimensional view via a generalized canonical discriminant analyses. heplot.candisc and heplot3d.candisc provide a low-rank 2D (or 3D) view of the effects for a given term in the space of maximum discrimination.

When an element of fill is TRUE, the ellipse outline is drawn using the corresponding color in col, and the interior is filled with a transparent version of this color specified in fill.alpha. To produce filled (non-degenerate) ellipses without the bounding outline, use a value of lty=0 in the corresponding position.

Value

The function invisibly returns an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes. These may be useful for adding additional annotations to the plot, using standard plotting functions. (No methods for manipulating these objects are currently available.)

The components are:

- H: a list containing the coordinates of each ellipse for the hypothesis terms
- E: a matrix containing the coordinates for the error ellipse
- center: x,y coordinates of the centroid
- xlim: x-axis limits
- ylim: y-axis limits
- radius: the radius for the unit circles used to generate the ellipses

References

See Also

Anova, linearHypothesis for details on testing mlms.
heplot1d, heplot3d, pairs.mlm, mark.H0 for other HE plot functions. trans.colors for calculation of transparent colors.
candisc, heplot.candisc for reduced-rank views of mlms in canonical space.
Examples

```r
## iris data
contasts(iris$Species) <- matrix(c(0, -1, 1, 2, -1, -1), 3, 2)
ccontrasts(iris$Species)

iris.mod <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species, data=iris)

hyp <- list("V":"Species1","S":"Species2")
heplot(iris.mod, hypotheses=hyp)
# compare with effect-size scaling
heplot(iris.mod, hypotheses=hyp, size="effect", add=TRUE)

# try filled ellipses
heplot(iris.mod, hypotheses=hyp, fill=TRUE, fill.alpha=0.2, col=c("red", "blue"))

heplot(iris.mod, hypotheses=hyp, fill=TRUE, col=c("red", "blue"), lty=c(0,0,1,1))
# vary label position and fill.alpha
heplot(iris.mod, hypotheses=hyp, fill=TRUE, fill.alpha=c(0.3,0.1), col=c("red", "blue"),
  lty=c(0,0,1,1), label.pos=0:3)

hep <- heplot(iris.mod, variables=c(1,3), hypotheses=hyp)
str(hep)

# all pairs
pairs(iris.mod, hypotheses=hyp, hyp.labels=FALSE)

## Pottery data, from car package
data(Pottery)
pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
heplot(pottery.mod)
heplot(pottery.mod, terms=FALSE, add=TRUE, col="blue",
  hypotheses=list(c("SiteCaldicot = 0", "SiteIsleThorns=0")),
  hyp.labels="Sites Caldicot and Isle Thorns")

## Rohwer data, multivariate multiple regression/ANCOVA
## ANCOVA, assuming equal slopes
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss, data=Rohwer)
Anova(rohwer.mod)
col <- c("red", "black", "blue", "cyan", "magenta", "brown", "gray")
heplot(rohwer.mod, col=col)
# Add ellipse to test all 5 regressors
heplot(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")), col=col, fill=TRUE)
# View all pairs
pairs(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))
# or 3D plot
col <- c("pink", "black", "blue", "cyan", "magenta", "brown", "gray")
heplot3d(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")), col=col)
```
heplot1d

One-Dimensional HE Plots

Description

This function plots a 1-dimensional representation of the hypothesis (H) and error (E) sums-of-squares-and-products matrices for terms and linear hypotheses in a multivariate linear model.

In particular, for a given response, the 1-D representations of H and E matrices correspond to line segments. The E "ellipse" is shown as a filled rectangle whose width equals the mean squared error for that response. The H "ellipse" for each model term is shown as a line segment whose length represents either the size of the effect or the evidence for that effect.

This version is an initial sketch. Details of the implementation are subject to change.

Usage

heplot1d(mod, ...)
heplot1d(mod, terms, hypotheses,
 term.labels = TRUE, hyp.labels = TRUE,
 variables = 1, error.ellipse = !add, factor.means = !add, grand.mean = !add,
 remove.intercept = TRUE, type = c("II", "III", "2", "3"),
 idata=NULL, idesign=NULL, icontраст=c("contr.sum", "contr.poly"),
 imatrix=NULL, iterm=NULL, manova,
 size = c("evidence", "effect.size"), level = 0.68, alpha = 0.05,
 center.pch = "|",
 col = getOption("heplot.colors",
 c("red", "blue", "black", "darkgreen",
 "darkcyan","magenta", "brown","darkgray")),
 lty = 2:1, lwd = 1:2, xlab, main = "",
 xlim, axes = TRUE, offset.axes, add = FALSE, verbose = FALSE, ...)

Arguments

mod
a model object of class "mlm".
terms
a logical value or character vector of terms in the model for which to plot hypothesis matrices; if missing or TRUE, defaults to all terms; if FALSE, no terms are plotted.
hypotheses
optional list of linear hypotheses for which to plot hypothesis matrices; hypotheses are specified as for the linearHypothesis function in the car package; the list elements can be named, in which case the names are used.
term.labels
logical value or character vector of names for the terms to be plotted. If TRUE the default) the names of the terms are used; if FALSE, term labels are not plotted.
hyp.labels
logical value or character vector of names for the hypotheses to be plotted. If TRUE (the default) the names of components of the list of hypotheses are used; if FALSE, hypothesis labels are not plotted.
variables: indices or names of the two response variables to be plotted; defaults to 1:2.

error.ellipse: if TRUE, plot the error ellipse; defaults to TRUE, if the argument add is FALSE (see below).

factor.means: logical value or character vector of names of factors for which the means are to be plotted, or TRUE or FALSE; defaults to TRUE, if the argument add is FALSE (see below).

grand.mean: if TRUE, plot the centroid for all of the data; defaults to TRUE, if the argument add is FALSE (see below).

remove.intercept: if TRUE (the default), do not plot the ellipse for the intercept even if it is in the MANOVA table.

type: “type” of sum-of-squares-and-products matrices to compute; one of "II", "III", "2", or "3", where "II" is the default (and "2" is a synonym).

idata: an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details of Anova for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.

idesign: a one-sided model formula using the “data” in idata and specifying the intra-subject design for repeated measure models.

icorrelations: names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly").

imatrix: In lieu of idata and idesign, you can specify the intra-subject design matrix directly via imatrix, in the form of list of named elements. Each element gives the columns of the within-subject model matrix for an intra-subject term to be tested, and must have as many rows as there are responses; the columns of the within-subject model matrix for different terms must be mutually orthogonal. This functionality requires car version 2.0 or later.

iterm: For repeated measures designs, you must specify one intra-subject term (a character string) to select the SSPE (E) matrix used in the HE plot. Hypothesis terms plotted include the iterm effect as well as all interactions of iterm with terms.

manova: optional Anova.mlm object for the model; if absent a MANOVA is computed. Specifying the argument can therefore save computation in repeated calls.

size: how to scale the hypothesis ellipse relative to the error ellipse; if "evidence", the default, the scaling is done so that a “significant” hypothesis ellipse extends outside of the error ellipse; if "effect.size", the hypothesis ellipse is on the same scale as the error ellipse.

level: equivalent coverage of ellipse for normally-distributed errors, defaults to 0.68.

alpha: significance level for Roy’s greatest-root test statistic; if size="evidence", then the hypothesis ellipse is scaled so that it just touches the error ellipse at the specified alpha level; a larger hypothesis ellipse therefore indicates statistical significance; defaults to 0.05.

center.pch: character to use in plotting the centroid of the data; defaults to "|".
heplot1d

- **col**: a color or vector of colors to use in plotting ellipses; the first color is used for the error ellipse; the remaining colors — recycled as necessary — are used for the hypothesis ellipses. A single color can be given, in which case it is used for all ellipses. For convenience, the default colors for all heplots produced in a given session can be changed by assigning a color vector via `options(heplot.colors = c(...)). Otherwise, the default colors are `c("red", "blue", "black", "darkgreen", "darkcyan", "magenta", "brown", "darkgray")`.

- **lty**: vector of line types to use for plotting the ellipses; the first is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single line type can be given. Defaults to `2:1`.

- **lwd**: vector of line widths to use for plotting the ellipses; the first is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single line width can be given. Defaults to `1:2`.

- **xlab**: x-axis label; defaults to name of the x variable.

- **main**: main plot label; defaults to `""`.

- **xlim**: x-axis limits; if absent, will be computed from the data.

- **axes**: Whether to draw the x, y axes; defaults to `TRUE`.

- **offset.axes**: proportion to extend the axes in each direction if computed from the data; optional.

- **add**: if `TRUE`, add to the current plot; the default is `FALSE`. If `TRUE`, the error ellipse is not plotted.

- **verbose**: if `TRUE`, print the MANOVA table and details of hypothesis tests; the default is `FALSE`.

- **...**: arguments to pass down to `plot`, `text`, and `points`.

Value

The function invisibly returns an object of class "heplot1d", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes. (No methods for manipulating these objects are currently available.)

The components are:

- **H**: ranges for the hypothesis terms
- **E**: range for E
- **xlim**: x-axis limits

Author(s)

Michael Friendly

See Also

- `anova`, `linearHypothesis` for hypothesis tests in `mlms`
- `heplot`, `heplot3d`, `pairs.mlm` for other HE plot methods
Examples

```r
# Plastic data
plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
heplot3d(plastic.mod, col=c("pink","blue"))
heplot3d(plastic.mod, col=c("pink","blue"), variables=2)
heplot3d(plastic.mod, col=c("pink","blue"), variables=3)

# Bees data
bees.mod <- lm(cbind(Iz,Iy) ~ caste*treat*time, data=Bees)
heplot3d(bees.mod)
heplot3d(bees.mod, variables=2)
```

heplot3d

Three-Dimensional HE Plots

Description

This function plots ellipsoids in 3D representing the hypothesis and error sums-of-squares-and-products matrices for terms and linear hypotheses in a multivariate linear model.

Usage

```r
heplot3d(mod, ...)  
```

```r
## S3 method for class 'mlm'
heplot3d(mod, terms, hypotheses, term.labels = TRUE,  
  hyp.labels = TRUE, err.label="Error", variables = 1:3, error.ellipsoid = !add,  
  factor.means = !add, grand.mean = !add, remove.intercept = TRUE,  
  type = c("II", "III", "2", "3"), idata=NULL, idesign=NULL,  
  icontrols=c("contr.sum", "contr.poly"), imatrix=NULL, iterm=NULL,  
  manova, size = c("evidence", "effect.size"),  
  level = 0.68, alpha = 0.05, segments = 40,  
  col=getOption("heplot3d.colors",  
    c("red", "blue", "black", "darkgreen",  
      "darkcyan","magenta", "brown","darkgray")),  
  lwd=c(1, 4),  
  shade=TRUE, shade.alpha=0.2, wire=c(TRUE,FALSE),  
  bg.col = c("white", "black"),  
  fogtype = c("none", "exp2", "linear", "exp"),  
  fov = 30, offset = 0.01,  
  xlab, ylab, zlab, xlim, ylim, zlim,  
  add = FALSE, verbose = FALSE,  
  warn.rank = FALSE, ...)
```
Arguments

- **mod**: a model object of class "mlm".
- **terms**: a logical value or character vector of terms in the model for which to plot hypothesis matrices; if missing or TRUE, defaults to all terms; if FALSE, no terms are plotted.
- **hypotheses**: optional list of linear hypotheses for which to plot hypothesis matrices; hypotheses are specified as for the `linearHypothesis` function in the `car` package; the list elements can be named, in which case the names are used.
- **term.labels**: logical value or character vector of names for the terms to be plotted. If TRUE (the default) the names of the terms are used; if FALSE, term labels are not plotted.
- **hyp.labels**: logical value or character vector of names for the hypotheses to be plotted. If TRUE (the default) the names of components of the list of hypotheses are used; if FALSE, hypothesis labels are not plotted.
- **err.label**: Label for the error ellipses.
- **variables**: indices or names of the three response variables to be plotted; defaults to 1:3.
- **error.ellipsoid**: if TRUE, plot the error ellipsoid; defaults to TRUE, if the argument add is FALSE (see below).
- **factor.means**: logical value or character vector of names of factors for which the means are to be plotted, or TRUE or FALSE; defaults to TRUE, if the argument add is FALSE (see below).
- **grand.mean**: if TRUE, plot the centroid for all of the data; defaults to TRUE, if the argument add is FALSE (see below).
- **remove.intercept**: if TRUE (the default), do not plot the ellipsoid for the intercept even if it is in the MANOVA table.
- **type**: "type" of sum-of-squares-and-products matrices to compute; one of "II", "III", "2", or "3", where "II" is the default (and "2" is a synonym).
- **idata**: an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details of `Anova` for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.
- **idesign**: a one-sided model formula using the "data" in idata and specifying the intra-subject design for repeated measure models.
- **icontrasts**: names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject "data"; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is `c("contr.sum", "contr.poly")`.
- **imatrix**: In lieu of idata and idesign, you can specify the intra-subject design matrix directly via imatrix, in the form of list of named elements. Each element gives the columns of the within-subject model matrix for an intra-subject term to be tested, and must have as many rows as there are responses; the columns of the within-subject model matrix for different terms must be mutually orthogonal. *This functionality requires car version 2.0 or later.*
For repeated measures designs, you must specify one intra-subject term (a character string) to select the SSPE (E) matrix used in the HE plot. Hypothesis terms plotted include the \texttt{iterm} effect as well as all interactions of \texttt{iterm} with \texttt{terms}.

Optional \texttt{Anova.mlm} object for the model; if absent a MANOVA is computed. Specifying the argument can therefore save computation in repeated calls.

How to scale the hypothesis ellipsoid relative to the error ellipsoid; if "evidence", the default, the scaling is done so that a "significant" hypothesis ellipsoid extends outside of the error ellipsoid; if "effect.size", the hypothesis ellipsoid is on the same scale as the error ellipsoid.

Equivalent coverage of ellipsoid for normally-distributed errors, defaults to 0.68.

Significance level for Roy's greatest-root test statistic; if \texttt{size="evidence"}, then the hypothesis ellipsoid is scaled so that it just touches the error ellipsoid at the specified alpha level; a larger hypothesis ellipsoid therefore indicates statistical significance; defaults to 0.05.

Number of segments composing each ellipsoid; defaults to 40.

A color or vector of colors to use in plotting ellipsoids; the first color is used for the error ellipsoid; the remaining colors — recycled as necessary — are used for the hypothesis ellipsoid. A single color can be given, in which case it is used for all ellipsoids. For convenience, the default colors for all heplots produced in a given session can be changed by assigning a color vector via \texttt{options(heplot3d.colors =c(...))}. Otherwise, the default colors are \texttt{c("pink", "blue", "black", "darkgreen", "darkcyan", "magenta", "brown", "darkgray")}.

A two-element vector giving the line width for drawing ellipsoids (including those that degenerate to an ellipse) and for drawing ellipsoids that degenerate to a line segment. The default is \texttt{c(1, 4)}.

A logical scalar or vector, indicating whether the ellipsoids should be rendered with \texttt{shade3d}. Works like \texttt{col}, except that \texttt{FALSE} is used for any 1 df degenerate ellipsoid.

A numeric value in the range [0,1], or a vector of such values, giving the alpha transparency for ellipsoids rendered with \texttt{shade=TRUE}.

A logical scalar or vector, indicating whether the ellipsoids should be rendered with \texttt{wire3d}. Works like \texttt{col}, except that \texttt{TRUE} is used for any 1 df degenerate ellipsoid.

Background colour, "white" or "black", defaulting to "white".

Type of "fog" to use for depth-cueing; the default is "none". See \texttt{bg}.

Field of view angle; controls perspective. See \texttt{viewpoint}.

Proportion of axes to offset labels; defaults to 0.01.

X-axis label; defaults to name of the x variable.

Y-axis label; defaults to name of the y variable.

Z-axis label; defaults to name of the z variable.

X-axis limits; if absent, will be computed from the data.

Y-axis limits; if absent, will be computed from the data.
heplot3d

zlim z-axis limits; if absent, will be computed from the data.

add if TRUE, add to the current plot; the default is FALSE. If TRUE, the error ellipsoid is neither plotted nor returned in the output object.

verbose if TRUE, print the MANOVA table and details of hypothesis tests; the default is FALSE.

warn.rank if TRUE, do not suppress warnings about the rank of the hypothesis matrix when the ellipsoid collapses to an ellipse or line; the default is FALSE.

... arguments passed from generic.

Details

When the H matrix for a term has rank < 3, the ellipsoid collapses to an ellipse (rank(H)=2) or a line (rank(H)=1).

Rotating the plot can be particularly revealing, showing views in which H variation is particularly large or small in relation to E variation. See play3d and movie3d for details on creating animations.

The arguments xlim, ylim, and zlim can be used to expand the bounding box of the axes, but cannot decrease it.

Value

heplot3d invisibly returns a list containing the bounding boxes of the error (E) ellipsoid and for each term or linear hypothesis specified in the call. Each of these is a 2 x 3 matrix with rownames "min" and "max" and colnames corresponding to the variables plotted. An additional component, center, contains the coordinates of the centroid in the plot.

The function also leaves an object named .frame in the global environment, containing the rgl object IDs for the axes, axis labels, and bounding box; these are deleted and the axes, etc. redrawn if the plot is added to.

References

See Also

Anova, linearHypothesis, for details on MANOVA tests and linear hypotheses

heplot, pairs.mlm, for other plotting methods for mlm objects

rgl-package, for details about 3D plots with rgl

heplot3d.candisc for 3D HE plots in canonical space.
Examples

```r
# Soils data, from car package
soils.mod <- lm(cbind(pH, N, Dens, P, Ca, Mg, K, Na, Conduc) ~ Block + Contour*Depth, data=Soils)
Anova(soils.mod)

heplot(soils.mod, variables=c("Ca", "Mg"))
pairs(soils.mod, terms="Depth", variables=c("pH", "N", "P", "Ca", "Mg"))

heplot3d(soils.mod, variables=c("Mg", "Ca", "Na"), wire=FALSE)

# Plastic data
plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
## Not run:
heplot3d(plastic.mod, col=c("red", "blue", "brown", "green3"), wire=FALSE)
## End(Not run)
```

Hernior

Recovery from Elective Herniorrhaphy

Description

A data set on measures of post-operative recovery of 32 patients undergoing an elective herniorrhaphy operation, in relation to pre-operative measures.

Usage

data(Hernior)

Format

A data frame with 32 observations on the following 9 variables.

- **age** patient age
- **sex** patient sex, a factor with levels f m
- **pstat** physical status (ignoring that associated with the operation). A 1-5 scale, with 1=perfect health, 5=very poor health.
- **build** body build, a 1-5 scale, with 1=emaciated, 2=thin, 3=average, 4=fat, 5=obsese.
- **cardiac** preoperative complications with heart, 1-4 scale, with 1=none, 2=mild, 3=moderate, 4=severe.
- **resp** preoperative complications with respiration, 1-4 scale, with 1=none, 2=mild, 3=moderate, 4=severe.
- **leave** condition upon leaving the recovery room, a 1-4 scale, with 1=routine recovery, 2=intensive care for observation overnight, 3=intensive care, with moderate care required, 4=intensive care, with moderate care required.
- **los** length of stay in hospital after operation (days)
- **nurse** level of nursing required one week after operation, a 1-5 scale, with 1=intense, 2=heavy, 3=moderate, 4=light, 5=none (?); see Details
Details

leave, nurse and los are outcome measures; the remaining variables are potential predictors of recovery status.

The variable nurse is recorded as 1-4, with remaining (20) entries entered as "." in both sources. It is not clear whether this means "none" or NA. The former interpretation was used in constructing the R data frame, so nurse==5 for these observations. Using Hernior$nurse[Hernior$nurse==5] <- NA would change to the other interpretation, but render nurse useless in a multivariate analysis.

The ordinal predictors could instead be treated as factors, and there are also potential interactions to be explored.

Source

References

Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J. and Ostrowski, E. (1994), A Handbook of Small Data Sets, Number 484, 390-391.

Examples

```r
str(Hernior)
Hern.mod <- lm(cbind(leave, nurse, los) ~ age + sex + pstat + build + cardiac + resp, data=Hernior)
anova(Hern.mod, test="Roy") # actually, all tests are identical
# test overall regression
linearHypothesis(Hern.mod, c("age", "sexm", "pstat", "build", "cardiac", "resp"))
# joint test of age, sex & cardiac
linearHypothesis(Hern.mod, c("age", "sexm", "cardiac"))

clr <- c("red", "darkgray", "blue", "darkgreen", "magenta", "brown", "black")
heplot(Hern.mod, col=clr)
pairs(Hern.mod, col=clr)

## Enhancing the pairs plot ...
# create better variable labels
vlab <- c("LeaveCondition\n(leave)", "NursingCare\n(nurse)", "LengthOfStay\n(los)")
# Add ellipse to test all 5 regressors simultaneously
hyp <- list("Regr" = c("age", "sexm", "pstat", "build", "cardiac", "resp"))
pairs(Hern.mod, hypotheses=hyp, col=clr, var.labels=vlab)

## Views in canonical space for the various predictors
if (require(candisc)) {
  Hern.canL <- candiscList(Hern.mod)
  plot(Hern.canL, term="age")
  plot(Hern.canL, term="sex")
  plot(Hern.canL, term="pstat") # physical status
}
```
interpPlot

Plot an Interpolation Between Two Related Data Sets

Description

Plot an interpolation between two related data sets, typically transformations of each other. This function is designed to be used in animations.

Points are plotted via the linear interpolation,

\[XY = XY_1 + \alpha(XY_2 - XY_1) \]

The function allows plotting of the data ellipse, the linear regression line, and line segments showing the movement of points.

Usage

interpPlot(xy1, xy2, alpha,
xlim, ylim, points=TRUE, add=FALSE, col=palette()[1],
ellipse = FALSE, ellipse.args = NULL,
abline=FALSE, col.lines = palette()[2], lwd=2,
id.method = "mahal", labels=rownames(xy1),
id.n = 0, id.cex = 1, id.col = palette()[1],
segments=FALSE, segment.col="darkgray",
...)

Arguments

xy1 First data set, a 2-column matrix or data.frame
xy2 Second data set, a 2-column matrix or data.frame
alpha The value of the interpolation fraction, typically (but not necessarily) \(0 \leq \alpha \leq 1 \).
xlim, ylim x, y limits for the plot. If not specified, the function uses the ranges of \(\text{rbind}(xy1, xy2) \).
points Logical. Whether to plot the points in the current interpolation?
col Color for plotted points.
add Logical. Whether to add to an existing plot?
ellipse logical. TRUE to plot a dataEllipse
ellipse.args other arguments passed to dataEllipse
abline logical. TRUE to plot the linear regression line for \(XY \)
col.lines line color
lwd line width
id.method How points are to be identified. See showLabels.
labels observation labels
interpPlot

id.n Number of points to be identified. If set to zero, no points are identified.
id.cex Controls the size of the plotted labels. The default is 1
id.col Controls the color of the plotted labels.
segments logical. TRUE to draw lines segments from xy1 to xy
segment.col line color for segments
... other arguments passed to plot()

Details

Interpolations other than linear can be obtained by using a non-linear series of \(\alpha \) values. For example \(\alpha = \sin(\text{seq}(0,1,0.1)) / \sin(1) \) will give a sinusoid interpolation.

Value

Returns invisibly the interpolated XY points.

Note

The examples here just use on-screen animations to the console graphics window. The animation package provides facilities to save these in various formats.

Author(s)

Michael Friendly

See Also

dataEllipse, showLabels, animation

Examples

 # animate an AV plot from marginal to conditional
 data(Duncan, package="car")
duncmod <- lm(prestige ~ income + education, data=Duncan)
mod.mat <- model.matrix(duncmod)

 # function to do an animation for one variable
dunc.anim <- function(variable, other, alpha=seq(0, 1, .1)) {
 var <- which(variable==colnames(mod.mat))
duncdev <- scale(Duncan[,c(variable, "prestige")], scale=FALSE)
duncav <- lsfit(mod.mat[, -var], cbind(mod.mat[, var], Duncan$prestige),
 intercept = FALSE)$residuals
colnames(duncav) <- c(variable, "prestige")

 lims <- apply(rbind(duncdev, duncav),2,range)
 for (alp in alpha) {
 main <- if(alp==0) paste("Marginal plot:", variable)

 # plot AV plot
 par(mfrow=c(1,2))
 plot(duncav)
 abline(v=lims[1])
 abline(h=lims[2])
 abline(a=0, b=1)
 points(duncav, cex=2)

 # plot AV plot
 plot(duncav)
 abline(v=lims[1])
 abline(h=lims[2])
 abline(a=0, b=1)
 points(duncav, cex=2)
 }

 # end of example
else paste(round(100*alp), "% Added-variable plot: ", variable)
interpPlot(duncdev, duncav, alp, xlim=lims[,1], ylim=lims[,2], pch=16, main = main, xlab = paste(variable, "| ", alp, other), ylab = paste("prestige | ", alp, other), ellipse=TRUE, ellipse.args=list(levels=0.68, fill=TRUE, fill.alpha=alp/2)), abline=TRUE, id.n=3, id.cex=1.2, cex.lab=1.25)
Sys.sleep(1)
}

show these in the R console
if(interactive()) {
dunc.anim("income", "education")
dunc.anim("education", "income")
}

###
correlated bivariate data with 2 outliers
show rotation from data space to PCA space
###
set.seed(123345)
x <- c(rnorm(100), 2, -2)
y <- c(x[1:100] + rnorm(100), -2, 2)
XY <- cbind(x, y)
rownames(XY) <- seq_along(x)
XY <- scale(XY, center=TRUE, scale=FALSE)

start, end plots
dataEllipse(XY, pch=16, levels=0.68, id.n=2)
abline(lm(y~x, data=as.data.frame(XY)))
abline(lm(x~y, data=as.data.frame(XY)))
abline(lm(y~x, data=as.data.frame(XY)))
abline(lm(x~y, data=as.data.frame(XY)))

pca <- princomp(XY, cor=TRUE)
scores <- pca$scores
dataEllipse(scores, pch=16, levels=0.68, id.n=2)
abline(lm(Comp.2 ~ Comp.1, data=as.data.frame(scores)), lwd=2, col="red")

show interpolation

functions for labels, as a function of alpha
main <- function(alpha) {if(alpha==0) "Original data"
else if(alpha==1) "PCA scores"
else paste(round(100*alpha,1), "% interpolation")}
xlab <- function(alpha) {if(alpha==0) "X"
else if(alpha==1) "PCA.1"
else paste("X +", alpha, "(X - PCA.1)")}
ylab <- function(alpha) {if(alpha==0) "Y"
else if(alpha==1) "PCA.2"
else paste("Y +", alpha, "(Y - PCA.2)"})
label.ellipse

Draw a Label on an Ellipse-like Object

Description

Draws a label on an ellipse (or similar closed polygon object) allowing a label.pos argument to specify the position of the label as center, bottom, left, top, or right relative to the object.

Usage

label.ellipse(ellipse, label, col = "black", label.pos = NULL, xpd = TRUE, tweak = 0.5 * c(strwidth("M"), strheight("M")), ...)
Arguments

- **ellipse**: A two-column matrix, or an object that can be coerced to one.
- **label**: Label text, a character string, or expression (or coercible to such a type).
- **col**: Label color
- **label.pos**: Label position, an integer (in 0:4) or character string (in c(\"center\", \"bottom\", \"left\", \"top\", \"right\")) or character string (in c(\"center\", \"bottom\", \"left\", \"top\", \"right\")).
 - Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the max/min coordinates of the ellipse; the value 0 specifies the centroid of the ellipse object. The default, label.pos=NULL uses the correlation of the ellipse to determine \"top\" ($r>=0$) or \"bottom\" ($r<0$).
- **xpd**: logical. Whether to allow the label to go beyond the plot area.
- **tweak**: A two element vector specifying minor adjustments applied to the x or y coordinate of the label, depending on label.pos. The defaults are one-half the width and height of an uppercase \"M\" on the current graphics device. Alternatively, you can set tweak=c(0, 0) and use offset to achieve more general adjustments.
- **...**: Other arguments passed to text, such as offset, srt, font, family, etc.

Details

Like text, this function simply adds to an existing base graphics plot.

Value

None.

Author(s)

Michael Friendly

See Also

text, par for other graphics parameters

Examples

```r
op <- par(mfrow=c(1,2))
plot(c(-2,2), c(-3,3), type="n", xlab="x", ylab="y")
E <- ellipse(c(0,0), matrix(c(1,2,2,5), 2, 2), 1, add=TRUE)

label.ellipse(E, \"default\", col="red", cex=2)
label.ellipse(E, \"center\", label.pos=0)
label.ellipse(E, \"top\", label.pos=3)
label.ellipse(E, \"left\", label.pos=2)
label.ellipse(E, \"right\", label.pos=4)

plot(c(-2,2), c(-3,3), type="n", xlab="x", ylab="y")
E <- ellipse(c(0,0), matrix(c(1,-2,-2,5), 2, 2), 1, add=TRUE)
```
Description

A utility function to draw and label a point in a 2D (or 3D) HE plot corresponding to a point null hypothesis being tested. This is most useful for repeated measure designs where null hypotheses for within-S effects often correspond to (0,0).

Usage

```r
mark.H0(x = 0, y = 0, z=NULL, label, cex = 2, pch = 19, col = "green3", lty = 2, pos = 2)
```

Arguments

- `x`: Horizontal coordinate for H0
- `y`: Vertical coordinate for H0
- `z`: z coordinate for H0. If not NULL, the function assumes that a heplot3d plot has been drawn.
- `label`: Text used to label the point. Defaults to `expression(hP)` in 2D plots.
- `cex`: Point and text size. For 3D plots, the function uses `size=5*cex` in a call to `points3d`.
- `pch`: Plot character. Ignored for 3D plots.
- `col`: Color for text, character and lines
- `lty`: Line type for vertical and horizontal reference lines. Not drawn if `lty=0`.
- `pos`: Position of text. Ignored for 3D plots

Value

None. Used for side effect of drawing on the current plot.

Author(s)

Michael Friendly
See Also
cross3d, ~~~

Examples
Vocab.mod <- lm(cbind(grade8, grade9, grade10, grade11) ~ 1, data = VocabGrowth)
idata <- data.frame(grade = ordered(8:11))

heplot(Vocab.mod, type = "III", idata = idata, idesign = grade, iterm = "grade",
main = "HE plot for Grade effect")
mark.H0()

MockJury

Effects Of Physical Attractiveness Upon Mock Jury Decisions

Description

Male participants were shown a picture of one of three young women. Pilot work had indicated that the one woman was beautiful, another of average physical attractiveness, and the third unattractive. Participants rated the woman they saw on each of twelve attributes. These measures were used to check on the manipulation by the photo.

Then the participants were told that the person in the photo had committed a Crime, and asked to rate the seriousness of the crime and recommend a prison sentence, in Years.

Does attractiveness of the "defendent" influence the sentence or perceived seriousness of the crime? Does attractiveness interact with the nature of the crime?

Usage
data(MockJury)

Format

A data frame with 114 observations on the following 17 variables.

Attr Attractiveness of the photo, a factor with levels Beautiful Average Unattractive
Crime Type of crime, a factor with levels Burglary (theft of items from victim’s room) Swindle (conned a male victim)
Years length of sentence given the defendant by the mock juror subject
Serious rating of how serious the subject thought the defendant’s crime was exciting rating of the photo for ‘exciting’
calm rating of the photo for ‘calm’
independent rating of the photo for ‘independent’
sincere rating of the photo for ‘sincere’
warm rating of the photo for ‘warm’
phyattr rating of the photo for 'physical attractiveness'
sociable rating of the photo for 'exciting'
kind rating of the photo for 'kind'
intelligent rating of the photo for 'intelligent'
strong rating of the photo for 'strong'
sophisticated rating of the photo for 'sophisticated'
happy rating of the photo for 'happy'
ownPA self-rating of the subject for 'physical attractiveness'

Source

From Dr. Wuensch’s StatData Page, http://core.ecu.edu/psyc/wuenschk/StatData/PLASTER.dat

References

Examples

manipulation check: test ratings of the photos classified by Attractiveness
jury.mod1 <- lm(cbind(phyattr, happy, independent, sophisticated) ~ Attr, data=MockJury)
Anova(jury.mod1, test="Roy")
##
Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)
Attr 2 1.7672 48.156 4 109 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

heplot(jury.mod1, main="HE plot for manipulation check")
pairs(jury.mod1)

if (require(candisc)) {
 jury.can <- candisc(jury.mod1)
 jury.can
 heplot(jury.can, main="Canonical HE plot")
}

influence of Attr of photo and nature of crime on Serious and Years
jury.mod2 <- lm(cbind(Serious, Years) ~ Attr * Crime, data=MockJury)
Anova(jury.mod2, test="Roy")
heplot(jury.mod2)

stepdown test (ANCOVA), controlling for Serious
jury.mod3 <- lm(Years ~ Serious + Attr * Crime, data=MockJury)
Anova(jury.mod3)
need to consider heterogeneous slopes?
jury.mod4 <- lm(Years ~ Serious * Attr * Crime, data=MockJury)
anova(jury.mod3, jury.mod4)

NLSY

National Longitudinal Survey of Youth Data

Description

The dataset come from a small random sample of the U.S. National Longitudinal Surve of Youth.

Usage

data(NLSY)

Format

A data frame with 243 observations on the following 6 variables.

- **math**: Math achievement test score
- **read**: Reading achievement test score
- **antisoc**: score on a measure of child's antisocial behavior, 0:6
- **hyperact**: score on a measure of child’s hyperactive behavior, 0:5
- **income**: yearly income of child’s father
- **educ**: years of education of child’s father

Details

In this dataset, math and read scores are taken at the outcome variables. Among the remaining predictors, income and educ might be considered as background variables necessary to control for. Interest might then be focused on whether the behavioural variables antisoc and hyperact contribute beyond that.

Source

Examples

data(NLSY)

examine the data
scatterplotMatrix(NLSY, smooth=FALSE)

test control variables by themselves
--
mod1 <- lm(cbind(read,math) ~ income+educ, data=NLSY)
Anova(mod1)
heplot(mod1, fill=TRUE)

test of overall regression
coefs <- rownames(coef(mod1))[-1]
linearHypothesis(mod1, coefs)
heplot(mod1, fill=TRUE, hypotheses=list("Overall"=coefs))

additional contribution of antisoc + hyperact over income + educ
--
mod2 <- lm(cbind(read,math) ~ antisoc + hyperact + income + educ, data=NLSY)
Anova(mod2)

coefs <- rownames(coef(mod2))[-1]
linearHypothesis(mod2, coefs)
heplot(mod2, fill=TRUE, hypotheses=list("Overall"=coefs, "mod2|mod1"=coefs[1:2]))

Oslo Transect Subset Data

Description

The Oslo data set contains chemical concentrations of 332 samples of different plant species collected along a 120 km transect running through the city of Oslo, Norway. It is a subset of the oslotronsect data provided by the rrcov package.

Usage

data(Oslo)

Format

A data frame with 332 observations on the following 14 variables.

site transect site ID, a factor with levels 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117 118 119 121 122 123 124 125 126 127 128 129 131 132 133 134 135 136 138 139 141 142 143 144
XC X coordinate, a numeric vector
YC Y coordinate, a numeric vector
forest forest type, a factor with levels birspr mixdec pine sprbir sprpin spruce
weather weather type, a factor with levels cloud moist nice rain
litho lithological type, a factor with levels camsed (Cambro-Silurian sedimentary),
gneis_o (Precambrian gneisses - Oslo), gneis_r (- Randsfjord), magm (Magmatic rocks)
altnitude altitude, a numeric vector
Cu Copper, a numeric vector
Fe Iron, a numeric vector
K Potassium, a numeric vector
Mg Magnesium, a numeric vector
Mn Manganese, a numeric vector
P Lead, a numeric vector
Zn Zinc, a numeric vector

Details

The OsloTransect contains 360 observations, with 9 observations per site. Only 7 chemical elements were retained from the 25 contained in the OsloTransect data, and these were all log-transformed, following Todorov and Filzmoser (2009).

Only complete cases on these variables were retained, and two lithological types of low frequency were removed, leaving 332 observations.

Source

References

Examples

data(Oslo)
table(Oslo$litho)

Oslo.mod <- lm(cbind(Cu, K, Mg, Mn, P, Zn) ~ litho, data=Oslo)
Anova(Oslo.mod)

heplot(Oslo.mod, var=c("Cu", "Mn"))
pairs(Oslo.mod)
pairs.mlm

Not run:

```r
if(require(candisc)) {
    Oslo.can <- candisc(Oslo.mod)
    Oslo.can
    heplot(Oslo.can)
    heplot3d(Oslo.can, shade=TRUE, wire=FALSE, alpha=0.5, var.col="red")
}
```

End(Not run)

pairs.mlm

Pairwise HE Plots

Description

The function (in the form of an `mlm` method for the generic `pairs` function) constructs a “matrix” of pairwise HE plots (see `heplot`) for a multivariate linear model.

Usage

```
## S3 method for class 'mlm'
pairs(x, variables, var.labels, type = c("II", "III", "2", "3"),
      idata=NULL, idesign=NULL, icontрастs=NULL, imatrix=NULL, iterm=NULL, manova,
      offset.axes = 0.05, digits =getOption("digits") - 1, fill=FALSE, fill.alpha=0.3, ...)
```

Arguments

- `x` an object of class `mlm`.
- `variables` indices or names of the three of more response variables to be plotted; defaults to all of the responses.
- `var.labels` labels for the variables plotted in the diagonal panels; defaults to names of the response variables.
- `type` “type” of sum-of-squares-and-products matrices to compute; one of "II", "III", "2", or "3", where "II" is the default (and "2" is a synonym).
- `idata` an optional data frame giving a factor or factors defining the intra-subject model for multivariate repeated-measures data. See Details of `Anova` for an explanation of the intra-subject design and for further explanation of the other arguments relating to intra-subject factors.
- `idesign` a one-sided model formula using the “data” in `idata` and specifying the intra-subject design for repeated measure models.
- `icontрастs` names of contrast-generating functions to be applied by default to factors and ordered factors, respectively, in the within-subject “data”; the contrasts must produce an intra-subject model matrix in which different terms are orthogonal. The default is c("contr.sum", "contr.poly").
In lieu of `idata` and `idesign`, you can specify the intra-subject design matrix directly via `imatrix`, in the form of list of named elements. Each element gives the columns of the within-subject model matrix for an intra-subject term to be tested, and must have as many rows as there are responses; the columns of the within-subject model matrix for different terms must be mutually orthogonal. This functionality requires `car` version 2.0 or later.

For repeated measures designs, you must specify one intra-subject term (a character string) to select the SSPE (E) matrix used in the HE plot. Hypothesis terms plotted include the `iterm` effect as well as all interactions of `iterm` with terms.

Optional `Anova.mlm` object for the model; if absent a MANOVA is computed. Specifying the argument can therefore save computation in repeated calls.

Proportion to extend the axes in each direction; defaults to 0.05.

Number of significant digits in axis end-labels; taken from the "digits" option.

A logical vector indicating whether each ellipse should be filled or not. The first value is used for the error ellipse, the rest — possibly recycled — for the hypothesis ellipses; a single fill value can be given. Defaults to FALSE for backward compatibility. See Details of `heplot`.

Alpha transparency for filled ellipses, a numeric scalar or vector of values within $[0,1]$, where 0 means fully transparent and 1 means fully opaque. Defaults to 0.3.

Arguments to pass down to `heplot`, which is used to draw each panel of the display.

References

See Also

`heplot`, `heplot3d`

Examples

```r
# ANCOVA, assuming equal slopes
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss, data=Rohwer)

# View all pairs, with ellipse for all 5 regressors
pairs(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))
```
Description

An experiment was conducted to determine the optimum conditions for extruding plastic film. Three responses were measured in relation to two factors, rate of extrusion and amount of an additive.

Usage

data(Plastic)

Format

A data frame with 20 observations on the following 5 variables.

tear a numeric vector: tear resistance
gloss a numeric vector: film gloss
opacity a numeric vector: film opacity
rate a factor representing change in the rate of extrusion with levels Low (-10%), High (10%)
additive a factor with levels Low (1.0%), High (1.5%)

Source

References

Examples

str(Plastic)
plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
Anova(plastic.mod)
pairs(plastic.mod)
Description

Results of chemical analyses of 48 specimens of Romano-British pottery published by Tubb et al. (1980). The numbers are the percentage of various metal oxides found in each sample for elements of concentrations greater than 0.01%. This is the original data set from Tubb et al. (1980), in contrast to Pottery.

Usage

data(Pottery2)

Format

A data frame with 48 observations on the following 12 variables.

- **Region** a factor with levels GL NF Wales
- **Site** a factor with levels AshleyRails Caldicot Gloucester IsleThorns Llanedryn
- **Kiln** a factor with levels 1 2 3 4 5
- **Al** amount of aluminum oxide, Al_2O_3
- **Fe** amount of iron oxide, Fe_2O_3
- **Mg** amount of magnesium oxide, MgO
- **Ca** amount of calcium oxide, CaO
- **Na** amount of sodium oxide, Na_2O
- **K** amount of potassium oxide, K_2O
- **Ti** amount of titanium oxide, TiO_2
- **Mn** amount of manganese oxide, MnO
- **Ba** amount of BaO

Details

The specimens are identified by their rownames in the data frame. Kiln indicates at which kiln site the pottery was found; Site gives the location names of those sites. The kiln sites come from three Regions, (“GL”=1, “Wales”=(2, 3), “NF”=(4, 5)), where the full names are “Gloucester”, “Wales”, and “New Forrest”.

The variable Kiln comes pre-supplied with contrasts to test interesting hypotheses related to Site and Region.

Source

Slightly modified from files found at: http://people.tamu.edu/~dcarlson/quant/data/RBPottery.html
References

See Also

`Pottery` for the related (subset) data set

Examples

data(Pottery2)
contrasts for Kiln correspond to between Region [,1:2] and within Region [,3:4]
contrasts(Pottery2$Kiln)

pmod <- lm(cbind(Al,Fe,Mg,Ca,Na,K,Ti,Mn,Ba)~Kiln, data=Pottery2)
anova(pmod)

extract coefficient names for linearHypotheses
coefs <- rownames(coef(pmod))[-1]

test differences among regions
linearHypothesis(pmod, coefs[1:2])
test differences within regions B, C
linearHypothesis(pmod, coefs[3:4])

heplot(pmod, fill=c(TRUE, FALSE), hypotheses=list("Region" =coefs[1:2], "WithinBC"=coefs[3:4]))

all pairwise views; note that Ba shows no effect
pairs(pmod, fill=c(TRUE, FALSE))

canonical view, via candisc::heplot
if (require(candisc)) {

canonical analysis: how many dimensions?
(pcans <- candisc(pmod))

heplot3d(pcans, scale=18, fill=c(TRUE, FALSE), var.col="darkgreen", var.lwd=2, var.cex=1.5)

Not run:
heplot3d(pcans, scale=8)

End(Not run)
Description

Data from a probe experiment testing whether immediate memory for sentences is influenced by the phrase structure of the sentence. The data sets come from Timm (1975), Ex. 3.14 and Ex. 3.16 (p.244).

Procedure: Subjects listened to tape-recorded sentences. Each sentence was followed by a "probe word" from one of 5 positions within the sentence. The subject had to respond with the word which immediately followed the probe word in the sentence. The dependent measure is response speed = k(1/reaction time).

Sample sentence:

* The tall man met the young girl who got the new hat.

Pos'ns: 1 2 3 4 5
Function: ADJ1 SUBJ ADJ2 OBJ REL.PN

In Probe2, there are two groups of subjects, pre-selected on a test of short term memory.

Usage

data(Probe1)
data(Probe2)

Format

Probe1: A data frame with 11 observations on the following 5 variables.

p1 speed at position 1
p2 speed at position 2
p3 speed at position 3
p4 speed at position 4
p5 speed at position 5

Probe2: A data frame with 20 observations on the following 6 variables.

stm Short term memory capacity: a factor with levels High Low
p1 speed at position 1
p2 speed at position 2
p3 speed at position 3
p4 speed at position 4
p5 speed at position 5
RatWeight

Details

These data sets (fictitious) are used as examples of single-sample and two-sample profile analysis or simple repeated measure designs with structured contrasts.

Source

Examples

```r
data(Probe1)
boxplot(Probe1)

pmod1 <- lm(cbind(p1,p2,p3,p4,p5) ~ 1, data=Probe1)
idata <- data.frame(position=factor(1:5))

library(car)
(pmmod1.aov <- Anova(pmod1, idata=idata, idesign="position"))

# using default contrasts (p5 as reference level)
heplot(pmod1, manova=pmod1.aov, item="position", type="III", idata=idata, idesign="position")
pairs(pmod1, manova=pmod1.aov, item="position", type="III", idata=idata, idesign="position")

# contrasts for substantative hypotheses regarding
# sentence position effects
C <- matrix(c(
1, 1, -1, -1, 0,
1, -1, 1, -1, 0,
1, -1, -1, 1, 0,
1, 1, 1, 1, -4), 5, 4)
rownames(C) <- paste("p", 1:5, sep="")
colnames(C) <- c("SubPred", "AdjNoun", "SPxAN", "RelPN")
contrasts(idata$position) <- C
(pmmod1.aov <- Anova(pmod1, idata=idata, idesign="position"))
heplot(pmod1, manova=pmod1.aov, item="position", type="III", idata=idata, idesign="position")
pairs(pmod1, manova=pmod1.aov, item="position", type="III", idata=idata, idesign="position")
```

RatWeight

Weight Gain in Rats Exposed to Thiouracil and Thyroxin

Description

The data are from a study of weight gain, where investigators randomly assigned 30 rats to three treatment groups: treatment 1 was a control (no additive); treatments 2 and 3 consisted of two different additives (thiouracil and thyroxin respectively) to the rats drinking water. Weight was measured at baseline (week 0) and at weeks 1, 2, 3, and 4. Due to an accident at the beginning of the study, data on 3 rats from the thyroxin group are unavailable.
Usage

data(RatWeight)

Format

A data frame with 27 observations on the following 6 variables.

- **trt**: a factor with levels Control Thiouracil Thyroxin
- **wt0**: Weight at Week 0 (baseline weight)
- **wt1**: Weight at Week 1
- **wt2**: Weight at Week 2
- **wt3**: Weight at Week 3
- **wt4**: Weight at Week 4

Details

The trt factor comes supplied with contrasts comparing Control to each of Thiouracil and Thyroxin.

Source

Originally from Box (1950), Table D (page 389), where the values for weeks 1-4 were recorded as the gain in weight for that week.

Examples

data(RatWeight)
contrasts(RatWeight$trt)

rat.mod <- lm(cbind(wt0, wt1, wt2, wt3, wt4) ~ trt, data=RatWeight)
rat.mod

idata <- data.frame(week = ordered(0:4))
Anova(rat.mod, idata=idata, idesign=~week, test="Roy")

quick look at between group effects
pairs(rat.mod)

between-S, baseline & week 4
heplot(rat.mod, col=c("red", "blue", "green3", "green3"),
variables=c(1,5),
hypotheses=c("trt1", "trt2"),
main="Rat weight data, Between-S effects")

within-S
heplot(rat.mod, idata=idata, idesign=~week, item="week",
col=c("red", "blue", "green3"),
hypotheses=c("trt1", "trt2"),
main="Rat weight data, Within-S effects")

ReactTime

Reaction Time Data

Description

Data from Maxwell and Delaney (1990, p. 497) representing the reaction times of 10 subjects in some task where visual stimuli are tilted at 0, 4, and 8 degrees; with noise absent or present. Each subject responded to 3 tilt x 2 noise = 6 conditions. The data thus comprise a repeated measure design with two within-S factors.

Usage

data(ReactTime)

Format

A data frame with 10 observations giving the reaction time for the 6 conditions.

- deg0NA: a numeric vector
- deg4NA: a numeric vector
- deg8NA: a numeric vector
- deg0NP: a numeric vector
- deg4NP: a numeric vector
- deg8NP: a numeric vector

Source

References

Examples

```r
data(ReactTime)
(RT.mod <- lm(as.matrix(ReactTime) ~ 1))

# within-S factors
within <- expand.grid(tilt=ordered(c(0,4,8)), noise=c("NA", "NP"))
Anova(RT.mod, idata=within, idesign=~tilt * noise)

heplot(RT.mod, idata=within, idesign=~tilt * noise, iterm="tilt")

# plotting means and std errors directly
levels <- expand.grid(Tilt=c(0,4,8), noise=c("NA", "NP"))
(means.df <- data.frame(levels, mean=colMeans(ReactTime), se=sqrt(diag(var(ReactTime))))/9))

with(means.df, {
  plot(Tilt, mean, type="n", main="Reaction Time data", xlab="Tilt", ylab="Reaction time")
  colors <- rep(c("red", "blue"), each=3)
  pts <- rep(c(15, 16), each=3)
  lines(Tilt[1:3], mean[1:3], col="red", lwd=2)
  lines(Tilt[4:6], mean[4:6], col="blue", lwd=2)
  points(Tilt, mean, pch=pts, col=colors, cex=1.2)
  arrows(Tilt, mean+se, Tilt, mean-se, angle=90, code=3, col=colors, len=.05, lwd=2)
  # labels at last point, in lieu of legend
  text(Tilt[3], mean[3]-10, labels="NA", col="red", pos=1)
  text(Tilt[6], mean[6]-10, labels="NP", col="blue", pos=1)
})
```

robmlm

Robust Fitting of Multivariate Linear Models

Description

Fit a multivariate linear model by robust regression using a simple M estimator.

These S3 methods are designed to provide a specification of a class of robust methods which extend `mlm`s, and are therefore compatible with other `mlm` extensions, including `Anova` and `heplot`.

Usage

```r
robmlm(X, ...)```

## S3 method for class 'formula'
robmlm(formula, data, subset, weights, na.action, model = TRUE, contrasts = NULL, ...)

## Default S3 method:
roblm(X, Y, w, 
P = 2 * pnorm(4.685, lower.tail = FALSE), tune, max.iter = 100, 
psi = psi.bisquare, tol = 1e-06, initialize, verbose = FALSE, ...)

## S3 method for class 'roblm'
print(x, ...)

## S3 method for class 'summary.roblm'
print(x, ...)

## S3 method for class 'roblm'
summary(object, ...)

### Arguments

- **formula**
  - a formula of the form `cbind(y1, y2, ...) ~ x1 + x2 + ....`

- **data**
  - a data frame from which variables specified in `formula` are preferentially to be taken.

- **subset**
  - An index vector specifying the cases to be used in fitting.

- **weights**
  - a vector of prior weights for each case.

- **na.action**
  - A function to specify the action to be taken if NAs are found. The ’factory-fresh’ default action in R is `na.omit`, and can be changed by `options(na.action=).

- **model**
  - should the model frame be returned in the object?

- **contrasts**
  - optional contrast specifications; see `lm` for details.

- **...**
  - other arguments, passed down. In particular relevant control arguments can be passed to the to the `roblm.default` method.

- **X**
  - for the default method, a model matrix, including the constant (if present)

- **Y**
  - for the default method, a response matrix

- **w**
  - prior weights

- **P**
  - two-tail probability, to find cutoff quantile for chisq (tuning constant); default is set for bisquare weight function

- **tune**
  - tuning constant (if given directly)

- **max.iter**
  - maximum number of iterations

- **psi**
  - robustness weight function; `psi.bisquare` is the default

- **tol**
  - convergence tolerance, maximum relative change in coefficients

- **initialize**
  - modeling function to find start values for coefficients, equation-by-equation; if absent WLS (`lm.wfit`) is used

- **verbose**
  - show iteration history? (TRUE or FALSE)

- **x**
  - a `roblm` object

- **object**
  - a `roblm` object
Details

Fitting is done by iterated re-weighted least squares (IWLS), using weights based on the Mahalanobis squared distances of the current residuals from the origin, and a scaling (covariance) matrix calculated by `cov.trob`. The design of these methods were loosely modeled on `rlm`.

An internal `vcov.mlml` function is an extension of the standard `vcov` method providing for observation weights.

Value

An object of class "robmlm" inheriting from `c("mlm", "lm")`. This means that the returned "robmlm" contains all the components of "mlm" objects described for `lm`, plus the following:

- `weights` final observation weights
- `iterations` number of iterations
- `converged` logical: did the IWLS process converge?

The generic accessor functions `coefficients`, `effects`, `fitted.values` and `residuals` extract various useful features of the value returned by `robmlm`.

Author(s)

John Fox; packaged by Michael Friendly

References


See Also

`rlm`, `cov.trob`

Examples

```
Skulls data
make shorter labels for epochs and nicer variable labels in heplots
Skulls$epoch <- factor(Skulls$epoch, labels = sub("c","", levels(Skulls$epoch)))
variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")

fit manova model, classically and robustly
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)

standard mlm methods apply here
coefficients(sk.rmod)
```
# index plot of weights
plot(sk.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(side=1, at=15+seq(0,120,30), col=Skulls$epoch)
axis(side=1, at=15+seq(0,120,30), labels=levels(Skulls$epoch), tick=FALSE, cex.axis=1)

# heplots to see effect of robmlm vs. mlm
heplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
  xlab=vlab[1], ylab=vlab[2], cex=lty=1)
heplot(sk.rmod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"),
  add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
  term.labels=FALSE, hyp.labels=FALSE, err.label="")

###########
# Pottery data

pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)-Site, data=Pottery)
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)-Site, data=Pottery)
Anova(pottery.mod)
Anova(pottery.rmod)

# index plot of weights
plot(pottery.rmod$weights, type="h")
points(pottery.rmod$weights, pch=16, col=Pottery$Site)

# heplots to see effect of robmlm vs. mlm
heplot(pottery.mod, cex=1.3, lty=1)
heplot(pottery.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
  term.labels=FALSE, err.label="")

###########
# Prestige data

# treat women and prestige as response variables for this example
prestige.mod <- lm(cbind(women, prestige) ~ income + education + type, data=Prestige)
prestige.rmod <- robmlm(cbind(women, prestige) ~ income + education + type, data=Prestige)

coef(prestige.mod)
coef(prestige.rmod)
# how much do coefficients change?
round(coef(prestige.mod) - coef(prestige.rmod),3)

# pretty plot of case weights
plot(prestige.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(prestige.rmod$weights, pch=16, col=Prestige$type)
legend(0, 0.7, levels(Prestige$type), pch=16, col=palette()[1:3], bg="white")

heplot(prestige.mod, cex=1.4, lty=1)
heplot(prestige.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
  term.labels=FALSE, err.label="")
**Description**

Data from an experiment by William D. Rohwer on kindergarten children designed to examine how well performance on a set of paired-associate (PA) tasks can predict performance on some measures of aptitude and achievement.

**Usage**

data(Rohwer)

**Format**

A data frame with 69 observations on the following 10 variables.

- **group**: a numeric vector, corresponding to SES
- **ses**: Socioeconomic status, a factor with levels Hi Lo
- **sat**: a numeric vector: score on a Student Achievement Test
- **ppvt**: a numeric vector: score on the Peabody Picture Vocabulary Test
- **raven**: a numeric vector: score on the Raven Progressive Matrices Test
- **n**: a numeric vector: performance on a 'named' PA task
- **s**: a numeric vector: performance on a 'still' PA task
- **ns**: a numeric vector: performance on a 'named still' PA task
- **na**: a numeric vector: performance on a 'named action' PA task
- **ss**: a numeric vector: performance on a 'sentence still' PA task

**Details**

The variables SAT, PPVT and Raven are responses to be potentially explained by performance on the paired-associate (PA) learning tasks, s, ns, na, and ss.

**Source**


**References**

Examples

```r
str(Rohwer)

ANCOVA, assuming equal slopes
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss, data=Rohwer)
Anova(rohwer.mod)

Visualize the ANCOVA model
heplot(rohwer.mod)
Add ellipse to test all 5 regressors
heplot(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))
View all pairs
pairs(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")))

or 3D plot
Not run
col <- c("red", "black", "blue", "cyan", "magenta", "brown", "gray")
heplot3d(rohwer.mod, hypotheses=list("Regr" = c("n", "s", "ns", "na", "ss")), col=col)

End(Not run)

fit separate, independent models for Lo/Hi SES
rohwer.ses1 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, subset=SES="Hi")
rohwer.ses2 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, subset=SES="Lo")

overlay the separate HE plots
heplot(rohwer.ses1, ylim=c(40,110), col=c("red", "black"))
heplot(rohwer.ses2, add=TRUE, col=c("blue", "black"), grand.mean=TRUE, error.ellipse=TRUE)
```

---

**RootStock**

**Growth of Apple Trees from Different Root Stocks**

**Description**

In a classic experiment carried out from 1918 to 1934, growth of apple trees of six different rootstocks were compared on four measures of size.

**Usage**

```r
data(RootStock)
```

**Format**

A data frame with 48 observations on the following 5 variables.

- **rootstock**: a factor with levels 1 2 3 4 5 6
- **girth4**: a numeric vector: trunk girth at 4 years (mm x 100)
- **ext4**: a numeric vector: extension growth at 4 years (m)
sake
taste ratings of japanese rice wine (sake)

description

siotani et al. (1985) describe a study of japanese rice wine (sake) used to investigate the relationship between two subjective ratings (taste and smell) and a number of physical measurements on 30 brands of sake.

these data provide one example of a case where a multivariate regression doesn’t benefit from having multiple outcome measures, using the standard tests. barrett (2003) uses this data to illustrate influence measures for multivariate regression models.

usage

data(sake)
Format

A data frame with 30 observations on the following 10 variables.

taste  mean taste rating
smell  mean smell rating
pH     pH measurement
acidity1 one measure of acidity
acidity2 another measure of acidity
sake   Sake-meter score
rsugar direct reducing sugar content
tsugar total sugar content
alcohol alcohol content
nitrogen formol-nitrogen content

Details

The taste and smell values are the mean ratings of 10 experts on some unknown scale.

Source


References


Examples

data(Sake)
  # quick look at the data
  boxplot(scale(Sake))

Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)

library(car)
Anova(Sake.mod)
predictors <- colnames(Sake)[-c(1:2)]
  # overall multivariate regression test
  linearHypothesis(Sake.mod, predictors)

heplot(Sake.mod, hypotheses=list("Regr" = predictors))
School Data, from Charnes et al. (1981). The aim is to explain scores on 3 different tests, reading, mathematics and selfesteem from 70 school sites by means of 5 explanatory variables.

Usage
data(schooldata)

Format
A data frame with 70 observations on the following 8 variables.

- education: education level of mother as measured in terms of percentage of high school graduates among female parents
- occupation: highest occupation of a family member according to a pre-arranged rating scale
- visit: parental visits index representing the number of visits to the school site
- counseling: parent counseling index calculated from data on time spent with child on school-related topics such as reading together, etc.
- teacher: number of teachers at a given site
- reading: total reading score as measured by the Metropolitan Achievement Test
- mathematics: total mathematics score as measured by the Metropolitan Achievement Test
- selfesteem: Coopersmith Self-Esteem Inventory, intended as a measure of self-esteem

Details
This dataset was shamelessly borrowed from the FRB package.
The relationships among these variables are unusual, a fact only revealed by plotting.

Source

Examples
data(schooldata)
# initial screening
plot(schooldata)

# better plot
library(corrgram)
corrrgram(schooldata, lower.panel=panel.ellipse, upper.panel=panel_pts)

# fit the MMreg model
school.mod <- lm(cbind(reading, mathematics, selfesteem) ~ education + occupation + visit + counseling + teacher, data=schooldata)
# shorthand
school.mod <- lm(cbind(reading, mathematics, selfesteem) ~ ., data=schooldata)
Anova(school.mod)

heplot(school.mod)
heplot3d(school.mod)

# robust model, using robmlm()
school.rmod <- robmlm(cbind(reading, mathematics, selfesteem) ~ ., data=schooldata)
# note that counseling is now significant
Anova(school.rmod)

# compare classical HEplot with robust
heplot(school.mod, cex=1.4, lty=1, fill=TRUE, fill.alpha=0.1)
heplot(school.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2),
term.labels=FALSE, err.label="", fill=TRUE)

---

**Skulls**  

**Egyptian Skulls**

---

**Description**

Measurements made on Egyptian skulls from five epochs.

**Usage**

data("Skulls")

**Format**

A data frame with 150 observations on the following 5 variables.

ePOCH the epoch the skull as assigned to, an ordered factor with levels c4000BC c3300BC, c1850BC, c200BC, and cAD150, where the years are only given approximately, of course.

mb maximal breadth of the skull.

bh basibregmatic height of the skull.

bl basalveolar length of the skull.

rh nasal height of the skull.
Details

The question is whether the measurements change over time. Non-constant measurements of the skulls over time would indicate interbreeding with immigrant populations.

Note that using polynomial contrasts for epoch essentially treats the time points as equally spaced.

Source


References


Examples

data(Skulls)
# make shorter labels for epochs
Skulls$epoch <- factor(Skulls$epoch, labels=substr("c","",levels(Skulls$epoch)))
# variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")

# fit manova model
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)

Manova(sk.mod)
summary(Manova(sk.mod))

# test trends over epochs
linearHypothesis(sk.mod, "epoch.L") # linear component
linearHypothesis(sk.mod, "epoch.Q") # quadratic component

# typical scatterplots are not very informative
scatterplot(mb ~ bh|epoch, data=Skulls,
            ellipse=TRUE, levels=0.68, smooth=FALSE, legend.coords="topleft")
scatterplot(mb ~ bl|epoch, data=Skulls,
            ellipse=TRUE, levels=0.68, smooth=FALSE, legend.coords="topleft")

# HE plots
heplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), xlab=vlab[1], ylab=vlab[2])
pairs(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), var.labels=vlab)

# 3D plot shows that nearly all of hypothesis variation is linear!
## Not run:
heplot3d(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), col=c("pink", "blue"))

# view in canonical space
if (require(candisc)) {
  sk.can <- candisc(sk.mod)
  sk.can
  heplot(sk.can)
  heplot3d(sk.can)
}

## End(Not run)

### Description

The data set SocGrades contains four outcome measures on student performance in an introductory sociology course together with six potential predictors. These data were used by Marascuilo and Levin (1983) for an example of canonical correlation analysis, but are also suitable as examples of multivariate multiple regression, MANOVA, MANCOVA and step-down analysis in multivariate linear models.

### Usage

data(SocGrades)

### Format

A data frame with 40 observations on the following 10 variables.

- class: Social class, an ordered factor with levels 1 > 2 > 3
- sex: Sex, a factor with levels F M
- gpa: Grade point average
- boards: College Board test scores
- hssoc: Previous high school unit in sociology, a factor with 2 no, yes
- pretest: Score on course pretest
- midterm1: Score on first midterm exam
- midterm2: Score on second midterm exam
- final: Score on final exam
- eval: Course evaluation

### Details

midterm1, midterm2, final, and possibly eval are the response variables. All other variables are potential predictors.

The factors class, sex, and hssoc can be used with as.numeric in correlational analyses.
statList

Calculate statistics for levels of factors

Description

statList provides a general method for calculating univariate or multivariate statistics for a matrix or data.frame stratified by one or more factors.

Usage

```r
statList(X, factors, FUN, drop = FALSE, ...)
```
`statList` 67

    colMeansList(X, factors, drop = FALSE, ...)
    covList(X, factors, drop = FALSE, ...)

**Arguments**

- **X**  
  A matrix or data frame containing the variables to be summarized

- **factors**  
  A vector, matrix or data frame containing the factors for which `X` is to be summarized. If `factors` is not specified, the result is calculated for all of the data in `X`.

- **FUN**  
  A function to be applied to the pieces of `X`, as split by `factors`.

- **drop**  
  Logical, indicating whether empty levels of `factors` are to be dropped from the result.

- **...**  
  Other arguments, passed to `FUN`.

**Details**

`statList` is the general function. `X` is first split by `factors`, and `FUN` is applied to the result. `colMeansList` and `covList` are just calls to `statList` with the appropriate `FUN`.

**Value**

Returns a list of items corresponding to the unique elements in `factors`, or the interaction of `factors`. Each item is the result of applying `FUN` to that collection of rows of `X`. The items are named according to the levels in `factors`.

**Author(s)**

Michael Friendly

**See Also**

`colMeans, termMeans`

**Examples**

```r
grand means
statList(iris[,1:4], FUN=colMeans)
species means
statList(iris[,1:4], iris$Species, FUN=colMeans)
same
colMeansList(iris[,1:4], iris$Species)

var-cov matrices, by species
covList(iris[,1:4], iris$Species)

multiple factors
iris$Dummy <- sample(c("Hi","Lo"),150, replace=TRUE)
colMeansList(iris[,1:4], iris[,5:6])
```
termMeans is a utility function designed to calculate means for the levels of factor(s) for any term in a multivariate linear model.

Usage

termMeans(mod, term, label.factors=FALSE, abbrev.levels=FALSE)

Arguments

mod An mlm model object
term A character string indicating a given term in the model. All factors in the term must be included in the model, even if they are in the model data frame.
label.factors If true, the rownames for each row in the result include the name(s) of the factor(s) involved, followed by the level values. Otherwise, the rownames include only the levels of the factor(s), with multiple factors separated by ‘:’
abbrev.levels Either a logical or an integer, specifying whether the levels values of the factors in the term are to be abbreviated in constructing the rownames. An integer specifies the minimum length of the abbreviation for each factor in the term.

Value

Returns a matrix whose columns correspond to the response variables in the model and whose rows correspond to the levels of the factor(s) in the term.

Author(s)

Michael Friendly

See Also

aggregate, colMeans
statList, colMeansList
Examples

```r
factors <- expand.grid(A=factor(1:3), B=factor(1:2), C=factor(1:2))
n <- nrow(factors)
responses <- data.frame(Y1=10+round(10*rnorm(n)), Y2=10+round(10*rnorm(n)))
test <- data.frame(factors, responses)
mod <- lm(cbind(Y1,Y2) ~ A*B, data=test)

termMeans(mod, "A")
termMeans(mod, "A:B")
termMeans(mod, "A:B", label.factors=TRUE)

Not run:
termMeans(mod, "A:B:C") # generates an error

End(Not run)

plastic.mod <- lm(cbind(tear, gloss, opacity) ~ rate*additive, data=Plastic)
colors = c("red", "darkblue", "darkgreen", "brown")
heplot(plastic.mod, col=colors, cex=1.25)
add means for interaction term
intMeans <- termMeans(plastic.mod, 'rate: additive', abbrev=2)
points(intMeans[,1], intMeans[,2], pch=18, cex=1.2, col="brown")
text(intMeans[,1], intMeans[,2], rownames(intMeans), adj=c(0.5,1), col="brown")
```

---

### trans.colors

**Make Colors Transparent**

Description

Takes a vector of colors (as color names or rgb hex values) and adds a specified alpha transparency to each.

Usage

```r
trans.colors(col, alpha = 0.5, names = NULL)
```

Arguments

- `col` A character vector of colors, either as color names or rgb hex values
- `alpha` alpha transparency value(s) to apply to each color (0 means fully transparent and 1 means opaque)
- `names` optional character vector of names for the colors

Details

Colors (col) and alpha need not be of the same length. The shorter one is replicated to make them of the same length.
Value

A vector of color values of the form "#rrggbbaa"

Author(s)

Michael Friendly

See Also

col2rgb, rgb, adjustcolor,

Examples

trans.colors(palette(), alpha=0.5)

# alpha can be vectorized
trans.colors(palette(), alpha=seq(0, 1, length=length(palette())))

# lengths need not match: shorter one is repeated as necessary
trans.colors(palette(), alpha=c(.1, .2))

trans.colors(colors()[1:20])

# single color, with various alphas
trans.colors("red", alpha=seq(0,1, length=5))
# assign names
trans.colors("red", alpha=seq(0,1, length=5), names=paste("red", 1:5, sep=""))

VocabGrowth

Vocabulary growth data

Description

Data from the Laboratory School of the University of Chicago. They consist of scores from a cohort of pupils in grades 8-11 on the vocabulary section of the Cooperative Reading Test. The scores are scaled to a common, but arbitrary origin and unit of measurement, so as to be comparable over the four grades.

Usage

data(VocabGrowth)
VocabGrowth

Format

A data frame with 64 observations on the following 4 variables.

grade8  Grade 8 vocabulary score
grade9  Grade 9 vocabulary score
grade10 Grade 10 vocabulary score
grade11 Grade 11 vocabulary score

Details

Since these data cover an age range in which physical growth is beginning to decelerate, it is of interest whether a similar effect occurs in the acquisition of new vocabulary.

Source


References


Examples

data(VocabGrowth)

# Standard multivariate & univariate repeated measures analysis
Vocab.mod <- lm(cbind(grade8, grade9, grade10, grade11) ~ 1, data = VocabGrowth)
idata <- data.frame(grade = ordered(8:11))
Anova(Vocab.mod, idata = idata, idesign = grade, type = "III")

## Type III Repeated Measures MANOVA Tests: Pillai test statistic
##   Df  test stat approx F num Df den Df  Pr(>F)
## (Intercept) 10.653 118.490    1    63 4.115e-16 ***
## grade 10.826  96.376    3    61 < 2.2e-16 ***

heplot(Vocab.mod, type = "III", idata = idata, idesign = grade, item = "grade", main = "HE plot for Grade effect")

### doing this 'manually' by explicitly transforming Y -> Y M
# calculate Y M, using polynomial contrasts
trends <- as.matrix(VocabGrowth) %*% poly(8:11, degree = 3)
colnames(trends) <- c("Linear", "Quad", "Cubic")

# test all trend means = 0 == Grade effect
within.mod <- lm(trends ~ 1)
Weight Loss Data

Description

Contrived data on weight loss and self esteem over three months, for three groups of individuals: Control, Diet and Diet + Exercise. The data constitute a double-multivariate design.

Usage

data(WeightLoss)

Format

A data frame with 34 observations on the following 7 variables.

- group: a factor with levels Control Diet DietEx.
- wl1: Weight loss at 1 month
- wl2: Weight loss at 2 months
- wl3: Weight loss at 3 months
- se1: Self esteem at 1 month
- se2: Self esteem at 2 months
- se3: Self esteem at 3 months

Details

Helmert contrasts are assigned to group, comparing Control vs. (Diet DietEx) and Diet vs. DietEx.

Source


References

Examples

data(WeightLoss)
str(WeightLoss)
table(WeightLoss$group)

contrasts(WeightLoss$group) <- matrix(c(-2,1,1,0,-1,1),ncol=2)
(wl.mod<-lm(cbind(wl1,wl2,wl3,se1,se2,se3)-group, data=WeightLoss))

heplot(wl.mod, hypotheses=c("group1", "group2"))
pairs(wl.mod, variables=1:3)
pairs(wl.mod, variables=4:6)

# within-S variables
within <- data.frame(measure=rep(c("Weight loss", "Self esteem"), each=3), month=rep(ordered(1:3),2))

# doubly-multivariate analysis: requires car 2.0+
## Not run:
if (packageDescription("car")[["Version"]]) >= 2) {
imatrix <- matrix(c(1,0,-1,1,0,0,
                   1,0,-2,0,0,0,
                   1,1,1,0,0,0,
                   0,1,0,0,-1,1,
                   0,1,0,0,0,-2,
                   0,1,0,0,1,1), 6, 6, byrow=TRUE)
# NB: for heplots the columns of imatrix should have names
colnames(imatrix) <- c("WL", "SE", "WL.L", "WL.Q", "SE.L", "SE.Q")
rownames(imatrix) <- colnames(WeightLoss)[-1]
(imatrix <- list(measure=imatrix[,1:2], month=imatrix[,3:6]))
contrasts(WeightLoss$group) <- matrix(c(-2,1,1,0,-1,1),ncol=2)
(wl.mcd<-lm(cbind(wl1,wl2,wl3,se1,se2,se3)-group, data=WeightLoss))
(wl.aov <- Anova(wl.mod, imatrix=imatrix, test="Roy"))

heplot(wl.mod, imatrix=imatrix, itemr="group:measure")
}

## End(Not run)

# do the correct analysis 'manually'
unit <- function(n,prefix="") {
  J <- matrix(rep(1,n), ncol=1)
  rownames(J) <- paste(prefix, 1:n, sep="")
  J
}

measure <- kronecker(diag(2), unit(3, 'M')/3, make.dimnames=TRUE)
colnames(measure) <- c('WL', 'SE')

between <- as.matrix(WeightLoss[-1])

between.mod <- lm(between ~ group, data=WeightLoss)
Anova(between.mod)
heplot(between.mod, hypotheses=c("group1", "group2"),
  xlab="Weight Loss", ylab="Self Esteem",
  col=c("red", "blue", "brown"),
  main="Weight Loss & Self Esteem: Group Effect")

month <- kronecker(diag(2), poly(1:3), make.dimnames=TRUE)
colnames(month) <- c("WL", "SE")
trends <- as.matrix(WeightLoss[, -1])
within.mod <- lm(trends ~ group, data=WeightLoss)
Anova(within.mod)

heplot(within.mod, hypotheses=c("group1", "group2"),
  xlab="Weight Loss", ylab="Self Esteem",
  type="III", remove.intercept=FALSE,
  term.labels=c("month", "group:month"),
  main="Weight Loss & Self Esteem: Within-S Effects")
mark.H0()
Index

*Topic \textasciitilde{kwd1} label.ellipse, 37
*Topic \textasciitilde{kwd2} label.ellipse, 37
*Topic \textasciitilde{kwd3} aplot
  arrow3d, 6
cross3d, 11
e llipse3d.axes, 11
heplot, 19
heplot1d, 25
heplot3d, 28
heplots-package, 2
mark.H0, 39
*Topic \textasciitilde{color}
  trans.colors, 69
*Topic \textasciitilde{kwd4} datasets
  Adopted, 4
  Bees, 7
  FootHead, 14
  Headache, 17
  Hernior, 32
  MockJury, 40
  NLSY, 42
  Oslo, 43
  Plastic, 47
  Pottery2, 48
  Probe, 50
  RatWeight, 51
  ReactTime, 53
  Rohwer, 58
  RootStock, 59
  Sake, 60
  schooldata, 62
  Skulls, 63
  SocGrades, 65
  VocabGrowth, 70
  WeightLoss, 72
*Topic \textasciitilde{kwd5} dynamic
cross3d, 11
  ellipse3d.axes, 11
  heplot3d, 28
*Topic \textasciitilde{kwd6} hplot
  coefplot, 9
  heplot, 19
  heplot1d, 25
  heplot3d, 28
  heplots-package, 2
  interpPlot, 34
  pairs.mlm, 45
*Topic \textasciitilde{kwd7} manip
  g3orth, 16
  termMeans, 68
*Topic \textasciitilde{kwd8} models
  termMeans, 68
*Topic \textasciitilde{kwd9} multivariate
  etasq, 13
  heplotq, 19
  heplot1d, 25
  heplot3d, 28
  heplots-package, 2
  pairs.mlm, 45
  robmlm, 54
  statList, 66
*Topic \textasciitilde{kwd10} package
  heplots-package, 2
*Topic \textasciitilde{kwd11} robust
  robmlm, 54
*Topic \textasciitilde{kwd12} utilities
  statList, 66

adjustcolor, 70
Adopted, 4
aggregate, 68
animation, 35
Anova, 3, 4, 13, 14, 21, 23, 26, 27, 29, 31, 45, 54
anova, 16
arrow3d, 6
Bees, 7
bg, 30

candisc, 23
coefficients, 56
coeplot, 9
col2rgb, 70
colMeans, 67, 68
colMeansList, 68
colMeansList (statList), 66
covNtrob, 56
covList (statList), 66
crossSd, 11, 40
dataEllipse, 35
effects, 56
effplot3d, 12
effplot3d.axes, 11
etasq, 13
ex1605, 5

fitted.values, 56
FootHead, 14

gsorth, 16

Headache, 17
heplot, 3, 19, 27, 31, 45, 46, 54
heplot.candisc, 23
heplot1d, 3, 23, 25
heplot3d, 3, 23, 27, 28, 46
heplot3d.candisc, 23, 31
heplots (heplots-package), 2
heplots-package, 2
Hernior, 32

interpPlot, 34

label.ellipse, 10, 37
linearHypothesis, 3, 4, 20, 22, 23, 25, 27, 29, 31
lines3d, 7
lm, 55, 56

manova, 4
mark.H0, 21, 23, 39
material3d, 6
MockJury, 40

movie3d, 31
na.omit, 55
NLSY, 42
options, 55
Oslo, 43
OsloTransect, 43, 44
pairs, 45
pairs.mlm, 3, 23, 27, 31, 45
par, 38
Plastic, 47
play3d, 31
points3d, 39
Pottery, 48, 49
Pottery2, 48
print.robmlm (robmlm), 54
print.summary.robmlm (robmlm), 54
Probe, 50
Probe1 (Probe), 50
Probe2 (Probe), 50
psi.bisquare, 55

qr, 17

RatWeight, 51
ReactTime, 53
residuals, 56
rgb, 70
rlm, 56
robmlm, 54
Rohwer, 58
RootStock, 59

Sake, 60
schooldata, 62
segments3d, 7, 11, 12
shade3d, 30
showLabels, 34, 35
Skulls, 63
SocGrades, 65
statList, 66, 68
summary.robmlm (robmlm), 54
termMeans, 67, 68
text, 38
text3d, 12
trans.colors, 23, 69
INDEX

vcov, 56
viewpoint, 30
VocabGrowth, 70
WeightLoss, 72
wire3d, 30