Package ‘hNMF’

October 18, 2018

Title Hierarchical Non-Negative Matrix Factorization
Version 0.9
Author Nicolas Sauwen
Maintainer Nicolas Sauwen <nicolas.sauwen@openanalytics.eu>
Description Hierarchical and single-level non-negative matrix factorization. Several NMF algorithms are available.
Depends R (>= 3.3.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports NMF, oro.nifti, tcltk, nnls, R.matlab, spatialfil, rasterImage, stats, graphics, grDevices, MASS
RoxygenNote 6.0.1.9000
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2018-10-18 10:30:02 UTC

R topics documented:

HALSacc ... 2
hNMF ... 2
imoverlay .. 3
initializeNMF ... 4
initializeSPA ... 4
oneLevelNMF ... 5
PGNMF ... 6
preProcesInputData .. 7
residualNMF .. 7
scaleNMFResult .. 8
semiNMF .. 8

Index 10
HALSacc

Accelerated hierarchical alternating least squares NMF. For a reference to the method, see N. Gillis, Nonnegative matrix factorization: complexity, algorithms and applications [Section 4.2, Algo. 6], PhD thesis, Université catholique de Louvain, February 2011.

Description

Accelerated hierarchical alternating least squares NMF. For a reference to the method, see N. Gillis, Nonnegative matrix factorization: complexity, algorithms and applications [Section 4.2, Algo. 6], PhD thesis, Université catholique de Louvain, February 2011.

Usage

HALSacc(x, nmfMod, alpha = 1, maxiter = 1000, checkDivergence = FALSE)

Arguments

x
Input data matrix, each column represents one observation and the rows correspond to the different features

nmfMod
Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition)

alpha
Nonnegative parameter of the accelerated method

maxiter
Maximum number of iterations

checkDivergence
currently not in use, to be implemented

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

nsauwen

hNMF

Hierarchical non-negative matrix factorization.

Description

Hierarchical non-negative matrix factorization.

Usage

hNMF(nmfInput, nmfMethod = "HALSacc")
Arguments

- **nmfInput**
 List with NMF input attributes
- **nmfMethod**
 String referring to the NMF algorithm to be used.

Value

Resulting NMF model (in accordance with NMF package definition)

Author(s)

Nicolas Sauwen

Examples

```r
# create nmfInput object
X <- matrix(runif(10*20), 10,20)
bgImageTensor <- array(0,dim=dim(X))
selectVect <- array(1, dim=dim(X))
nmfInput <- NULL
nmfInput$numRows <- nrow(X)
nmfInput$numCols <- ncol(X)
nmfInput$numSlices <- 1
nmfInput$bgImageTensor <- bgImageTensor
nmfInput$selectVect <- selectVect

# run NMF with default algorithm, 5 runs with random initialization
NMFresult1 <- oneLevelNMF(X, rank=2, nruns=5)

# run NMF with specified algorithm and with initialized sources
W0 <- initializeSPA(X,3)
NMFresult2 <- oneLevelNMF(X, rank=3, method="HALSacc", initData = W0)
```

imoverlay
Overlay a mask or a color scaled image on top of a background image

Description

Overlay a mask or a color scaled image on top of a background image

Usage

`imoverlay(image, overlay, selectVect = NULL, color = c(0, 1, 0))`
Arguments

image A matrix, background image
overlay A matrix, serving as the overlay mask or figure
selectVect A matrix (binary values), specifying which matrix elements are to be overlaid
color 3-element vector, defining the RGB color to be used in case the overlay is a mask

Author(s)

Nicolas Sauwen

initializeNMF Initialize NMF model with initial spectral data

Description

Initialize NMF model with initial spectral data

Usage

initializeNMF(X, initData = NULL)

Arguments

X input matrix
initData source or abundance matrix with initial values

initializeSPA The successive projection algorithm, a useful method for initializing the NMF source matrix

Description

The successive projection algorithm, a useful method for initializing the NMF source matrix

Usage

initializeSPA(data, nSources)

Arguments

data Input data matrix. The columns correspond to the data points, each row represents one feature
nSources Number of sources to be obtained
oneLevelNMF

Value
Matrix with initialized sources as its columns

Author(s)
Nicolas Sauwen

Examples

```r
# random data
X <- matrix(runif(10*20), 10, 20)

# Create initial source matrix for 3 sources
W0 <- initializeSPA(X, 3)
```

oneLevelNMF

Perform Non-Negative Matrix factorization

Description
Perform Non-Negative Matrix factorization

Usage

```r
oneLevelNMF(X, rank, initData = NULL, method = "PGNMF", nruns = 10,
            checkDivergence = TRUE)
```

Arguments

- **X**: input matrix. Each column represents one observation and the rows correspond to the different features
- **rank**: number of NMF components to be found
- **initData**: either of the NMF factor matrices, with initial values
- **method**: name of the NMF method to be used. "PGNMF" (default) and "HALSacc" are available by default. Any method from the NMF package can also be specified
- **nruns**: number of NMF runs. It is recommended to run the NMF analyses multiple times when random seeding is used, to avoid a suboptimal solution
- **checkDivergence**: Boolean indicating whether divergence checking should be performed

Value
Scaled NMF model (in accordance with the NMF package definition)
Author(s)

Nicolas Sauwen

Examples

```r
# random data
X <- matrix(runif(10*20), 10, 20)

# run NMF with default algorithm, 5 runs with random initialization
NMFresult1 <- oneLevelNMF(X, rank=2, nruns=5)

# run NMF with specified algorithm and with initialized sources
W0 <- initializeSPA(X, 3)
NMFresult2 <- oneLevelNMF(X, rank=3, method="HALSacc", initData = W0)
```

PGNMF

Description

Usage

```r
PGNMF(X, nmfMod, tol = 1e-05, maxIter = 500, timeLimit = 300, 
      checkDivergence = TRUE)
```

Arguments

- **X**: Input data matrix, each column represents one data point and the rows correspond to the different features
- **nmfMod**: Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition)
- **tol**: Tolerance for a relative stopping condition
- **maxIter**: Maximum number of iterations
- **timeLimit**: Limit of time duration NMF analysis
- **checkDivergence**: Boolean indicating whether divergence checking should be performed. Default is TRUE, but it should be set to FALSE when using random initialization
preProcesInputData

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

nsauwen

preProcesInputData
Condition input data matrix properly for NMF

Description

Condition input data matrix properly for NMF

Usage

preProcesInputData(X)

Arguments

X
input matrix

Value

matrix with non-zero elements

residualNMF
Computation of relative NMF residual per observation

Description

Computation of relative NMF residual per observation

Usage

residualNMF(X, nmffit)

Arguments

X
Input data matrix, each column represents one observation
nmffit
NMF model fitted to the input data in X

Value

Relative residual per observation, returned as a vector

Author(s)

nsauwen
scaleNMFResult

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Description

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Usage

```r
scaleNMFResult(NMFResult)
```

Arguments

- `NMFResult`
 Fitted NMF model

Value

NMFResult Rescaled NMF model

Author(s)

Nicolas Sauwen

semiNMF

Description

Usage

```r
semiNMF(X, nmfMod, maxiter = 2000, checkDivergence = FALSE)
```
semiNMF

Arguments

X
Input data matrix, each column represents one observation and the rows correspond to the different features

nmfMod
Valid NMF model, containing initialized factor matrices (in accordance with the NMF package definition)

maxiter
Maximum number of iterations

checkDivergence
currently not in use, to be implemented

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

nsauwen
Index

HALSacc, 2
hNMF, 2

imoverlay, 3
initializeNMF, 4
initializeSPA, 4

oneLevelNMF, 5

PGNMF, 6
preProcessInputData, 7

residualNMF, 7

scaleNMFResult, 8

semiNMF, 8