Working with Unknown Values

The gdata package
by Gregor Gorjanc

This vignette has been published as Gorjanc (2007).

Introduction

Unknown or missing values can be represented in various ways. For example SAS uses . (dot), while R uses \(\text{NA} \), which we can read as Not Available. When we import data into R, say via \texttt{read.table} or its derivatives, conversion of blank fields to \(\text{NA} \) (according to \texttt{read.table} help) is done for logical, integer, numeric and complex classes. Additionally, the \texttt{na.strings} argument can be used to specify values that should also be converted to \(\text{NA} \). Inversely, there is an argument \texttt{na} in \texttt{write.table} and its derivatives to define value that will replace \(\text{NA} \) in exported data. There are also other ways to import/export data into R as described in the R Data Import/Export manual (R Development Core Team, 2006). However, all approaches lack the possibility to define unknown value(s) for some particular column. It is possible that an unknown value in one column is a valid value in another column. For example, I have seen many datasets where values such as 0, -9, 999 and specific dates are used as column specific unknown values.

This note describes a set of functions in package \texttt{gdata} (Warnes, 2006): \texttt{isUnknown}, \texttt{unknownToNA} and \texttt{NAToUnknown}, which can help with testing for unknown values and conversions between unknown values and \(\text{NA} \). All three functions are generic (S3) and were tested (at the time of writing) to work with: integer, numeric, character, factor, Date, \texttt{POSIXct}, \texttt{POSIXlt}, list, \texttt{data.frame} and \texttt{matrix} classes.

Description with examples

The following examples show simple usage of these functions on numeric and factor classes, where value 0 (beside \(\text{NA} \)) should be treated as an unknown value:

\begin{verbatim}
> library("gdata")
> xNum <- c(0, 6, 0, 7, 8, 9, NA)
> isUnknown(x=xNum)

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE
\end{verbatim}

The default unknown value in \texttt{isUnknown} is \(\text{NA} \), which means that output is the same as \texttt{is.na} — at least for atomic classes. However, we can pass the argument \texttt{unknown} to define which values should be treated as unknown:

\begin{verbatim}
> isUnknown(x=xNum, unknown=0)

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
\end{verbatim}

This skipped \(\text{NA} \), but we can get the expected answer after appropriately adding \(\text{NA} \) into the argument unknown:

\begin{verbatim}
> isUnknown(x=xNum, unknown=c(0, NA))

[1] TRUE FALSE TRUE FALSE FALSE FALSE TRUE
\end{verbatim}

Now, we can change all unknown values to \(\text{NA} \) with \texttt{unknownToNA}. There is clearly no need to add \(\text{NA} \) here. This step is very handy after importing data from an external source, where many different unknown values might be used. Argument \texttt{warning=TRUE} can be used, if there is a need to be warned about “original” \(\text{NA} \)s:

\begin{verbatim}
> (xNum2 <- unknownToNA(x=xNum, unknown=0))

[1] NA 6 NA 7 8 9 NA
\end{verbatim}

Prior to export from R, we might want to change unknown values (\(\text{NA} \) in R) to some other value. Function \texttt{NAToUnknown} can be used for this:

\begin{verbatim}
> NAToUnknown(x=xNum2, unknown=999)

[1] 999 6 999 7 8 9 999
\end{verbatim}

Converting \(\text{NA} \) to a value that already exists in \texttt{x} issues an error, but \texttt{force=TRUE} can be used to overcome this if needed. But be warned that there is no way back from this step:

\begin{verbatim}
> NAToUnknown(x=xNum2, unknown=7, force=TRUE)

[1] 7 6 7 7 8 9 7
\end{verbatim}

Examples below show all peculiarities with class \texttt{factor}. \texttt{unknownToNA} removes unknown value from levels and inversely \texttt{NAToUnknown} adds it with a warning. Additionally, "NA" is properly distinguished from \(\text{NA} \). It can also be seen that the argument \texttt{unknown} in functions \texttt{isUnknown} and \texttt{unknownToNA} need not match the class of \texttt{x} (otherwise factor should be used) as the test is internally done with \texttt{%in%}, which nicely resolves coercing issues.

\begin{verbatim}
> (xFac <- factor(c(0, "BA", "RA", "BA", NA, "NA")))

[1] 0 BA RA BA <NA> NA
Levels: 0 BA RA
\end{verbatim}
DESCRIPTION WITH EXAMPLES

> isUnknown(x=xFac)
[1] FALSE FALSE FALSE FALSE TRUE FALSE
> isUnknown(x=xFac, unknown=0)
[1] TRUE FALSE FALSE FALSE FALSE FALSE
> isUnknown(x=xFac, unknown=c(0, NA))
[1] TRUE FALSE FALSE FALSE TRUE FALSE
> isUnknown(x=xFac, unknown=c(0, "NA"))
[1] TRUE FALSE FALSE FALSE TRUE TRUE

> (xFac <- unknownToNA(x=xFac, unknown=0))
[1] <NA> BA RA BA <NA> NA
Levels: BA NA RA

> (xFac <- NAToUnknown(x=xFac, unknown=0))
[1] 0 BA RA BA 0 NA
Levels: 0 BA NA RA

These two examples with classes numeric and factor are fairly simple and we could get the same results with one or two lines of R code. The real benefit of the set of functions presented here is in list and data.frame methods, where data.frame methods are merely wrappers for list methods.

We need additional flexibility for list/data.frame methods, due to possibly having multiple unknown values that can be different among list components or data.frame columns. For these two methods, the argument unknown can be either a vector or list, both possibly named. Of course, greater flexibility (defining multiple unknown values per component/column) can be achieved with a list.

When a vector/list object passed to the argument unknown is not named, the first value/component of a vector/list matches the first component/column of a list/data.frame. This can be quite error prone, especially with vectors. Therefore, I encourage the use of a list. In case vector/list passed to argument unknown is named, names are matched to names of list or data.frame. If lengths of unknown and list or data.frame do not match, recycling occurs.

The example below illustrates the application of the described functions to a list which is composed of previously defined and modified numeric (xNum) and factor (xFac) classes. First, function isUnknown is used with 0 as an unknown value. Note that we get FALSE for NAs as has been the case in the first example.

> (xList <- list(a=xNum, b=xFac))
$a
[1] 0 6 0 7 8 9 NA
$b
[1] 0 BA RA BA 0 NA
Levels: 0 BA NA RA

We need to add NA as an unknown value. However, we do not get the expected result this way!

> isUnknown(x=xList, unknown=c(0, NA))
$a
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
$b
[1] FALSE FALSE FALSE FALSE FALSE FALSE

This is due to matching of values in the argument unknown and components in a list; i.e., 0 is used for component a and NA for component b. Therefore, it is less error prone and more flexible to pass a list (preferably a named list) to the argument unknown, as shown below.

> (xList1 <- unknownToNA(x=xList,
+ unknown=list(b=c(0, "NA"),
+ a=0)))
$a
[1] NA 6 NA 7 8 9 NA
$b
[1] <NA> BA RA BA <NA> <NA>
Levels: BA RA

Changing NAs to some other value (only one per component/column) can be accomplished as follows:

> (xList1 <- unknownToNA(x=xList1,
+ unknown=list(b="no", a=0)))
$a
[1] NA 6 NA 7 8 9 0
$b
[1] <NA> BA RA BA <NA> <NA>
Levels: BA RA

A named component .default of a list passed to argument unknown has a special meaning as it will match a component/column with that name and any other not defined in unknown. As such it is very useful if the number of components/columns with the same unknown value(s) is large. Consider a wide data.frame named df. Now .default can be used to define unknown value for several columns:

$ df
 A B
 0 1 2
$ df$C
[1] 3 4 5 6 7 8 9

$ df$C
[1] 3 4 5 6 7 8 9

$ df$C
[1] 3 4 5 6 7 8 9

A named component .default of a list passed to argument unknown has a special meaning as it will match a component/column with that name and any other not defined in unknown. As such it is very useful if the number of components/columns with the same unknown value(s) is large. Consider a wide data.frame named df. Now .default can be used to define unknown value for several columns:
> tmp <- list(.default=0,
+ col1=999,
+ col2="unknown")
> (df2 <- unknownToNA(x=df,
+ unknown=tmp))

 col1 col2 col3 col4
1 0 a NA NA
2 1 b 1 1
3 NA c 2 2
4 2 <NA> 3 2

If there is a need to work only on some components/columns you can of course “skip” columns with standard R mechanisms, i.e., by subsetting list or data.frame objects:

> df2 <- df
> cols <- c("col1", "col2")
> tmp <- list(col1=999,
+ col2="unknown")
> df2[, cols] <- unknownToNA(x=df[, cols],
+ unknown=tmp)
> df2

 col1 col2 col3 col4
1 0 a 0 0
2 1 b 1 1
3 NA c 2 2
4 2 <NA> 3 2

Summary

Functions isUnknown, unknownToNA and NAToUnknown provide a useful interface to work with various representations of unknown/missing values. Their use is meant primarily for shaping the data after importing to or before exporting from R. I welcome any comments or suggestions.

Bibliography

G. R. Warnes. gdata: Various R programming tools for data manipulation, 2006. URL http://cran.r-project.org/src/contrib/Descriptions/gdata.html R package version 2.3.1. Includes R source code and/or documentation contributed by Ben Bolker, Gregor Gorjanc and Thomas Lumley.

Gregor Gorjanc
University of Ljubljana, Slovenia
gregor.gorjanc@bfro.uni-lj.si