Package ‘colorspace’

March 11, 2015

Version 1.2-6
Date 2015-03-10
Title Color Space Manipulation
Description Carries out mapping between assorted color spaces including
RGB, HSV, HLS, CIEXYZ, CIELUV, HCL (polar CIELUV),
CIELAB and polar CIELAB. Qualitative, sequential, and
diverging color palettes based on HCL colors are provided.
Depends R (>= 2.13.0), methods
Imports graphics
Suggests KernSmooth, MASS, kernlab, mvtnorm, vcd, dichromat, tcltk
License BSD_3_clause + file LICENSE
LazyData yes
Author Ross Ihaka [aut],
Paul Murrell [aut],
Kurt Hornik [aut],
Jason C. Fisher [aut],
Achim Zeileis [aut, cre]
Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-03-11 00:21:00

R topics documented:

choose_palette .. 2
color-class .. 3
coords .. 4
desaturate ... 5
hex .. 6
hex2RGB .. 7
HLS .. 8
choose_palette

Graphical User Interface for Choosing HCL Color Palettes

Description

A graphical user interface (GUI) for viewing, manipulating, and choosing HCL color palettes.

Usage

choose_palette(pal = diverge_hcl, n = 7L, parent = NULL)

Arguments

- **pal**: function; the initial palette, see ‘Value’ below.
- **n**: integer; the initial number of colors in the palette.
- **parent**: tkwin; the GUI parent window.

Details

Computes palettes based on the HCL (hue-chroma-luminance) color model (as implemented by polarLUV). The GUI interfaces the palette functions rainbow_hcl for qualitative palettes, sequential_hcl for sequential palettes with a single hue, heat_hcl for sequential palettes with multiple hues, and diverge_hcl for diverging palettes (composed from two single-hue sequential palettes).

The GUI allows for interactive modification of the arguments of the respective palette-generating functions, i.e., starting/ending hue (wavelength, type of color), minimal/maximal chroma (colorfulness), minimal maximal luminance (brightness, amount of gray), and a power transformations that control how quickly/slowly chroma and/or luminance are changed through the palette. Subsets of the parameters may not be applicable depending on the type of palette chosen. See rainbow_hcl and Zeileis et al. (2009) for a more detailed explanation of the different arguments.
Optionally, active palette can be illustrated by using a range of examples such as a map, heatmap, scatter plot, perspective 3D surface etc.

To demonstrate different types of deficiencies, the active palette may be desaturated (emulating printing on a grayscale printer) and, if the `dichromat` package is available, collapsed to emulate different types of color-blindness (without red-green or green-blue contrasts).

Value

Returns a palette-generating function with the selected arguments. Thus, the returned function takes an integer argument and returns the corresponding number of HCL colors by traversing HCL space through interpolation of the specified hue/chroma/luminance/power values.

Author(s)

Jason C. Fisher and Achim Zeileis

References

See Also

`rainbow_hcl`

Examples

```r
if(interactive()) {
  pal <- choose_palette()
  filled.contour(volcano, color.palette = pal, asp = 1)
}
```

--

color-class

Class "color"

Description

Objects from the class `color` represent colors in a number of color spaces. In particular, there are subclasses of `color` which correspond to RGB, HSV, HLS, CIEXYZ, CIELUV, CIELAB and polar versions of the last two spaces.

Objects from the Class

Objects can be created by calls to the functions `RGB`, `sRGB`, `HSV`, `HLS`, `XYZ`, `LUV`, `LAB`, `polarLUV`, and `polarLAB`. These are all subclasses of the virtual class `color`.
Slots

coords: An object of class "matrix".

Methods

[signature(x = "color")]: This method makes it possible to take subsets of a vector of colors.

coerce signature(from = "color", to = "RGB") : convert a color vector to RGB.
coerce signature(from = "color", to = "sRGB") : convert a color vector to sRGB.
coerce signature(from = "color", to = "XYZ") : convert a color vector to XYZ.
coerce signature(from = "color", to = "LAB") : convert a color vector to LAB.
coerce signature(from = "color", to = "polarLAB") : convert a color vector to polarLAB.
coerce signature(from = "color", to = "HSV") : convert a color vector to HSV.
coerce signature(from = "color", to = "HLS") : convert a color vector to HLS.
coerce signature(from = "color", to = "LUV") : convert a color vector to LUV.
coerce signature(from = "color", to = "polarLUV") : convert a color vector to polarLUV.
coords signature(color = "color") : extract the color coordinates from a color vector.
plot signature(x = "color") : plot a color vector
show signature(object = "color") : show a color vector.

Author(s)

Ross Ihaka

See Also

RGB, XYZ, HSV, HLS, LAB, polarLAB, LUV, polarLUV, mixcolor.

Examples

x = RGB(runif(1000),runif(1000),runif(1000))
plot(as(x, "LUV"))

coords Extract the numerical coordinates of a color

Description

This function returns a matrix with three columns which give the coordinates of a color in its natural color space.

Usage

coords(color)
desaturate

Arguments

color A color.

Value

A numeric matrix giving the coordinates of the color.

Author(s)

Ross Ihaka.

See Also

RGB, XYZ, LAB, polarLAB, LUV, polarLUV, mixcolor.

Examples

x <- RGB(1, 0, 0)
coords(as(x, "HSV"))

desaturate Desaturate Colors by Chroma Removal in HCL Space

Description

Transform a vector of given colors to the corresponding colors with chroma removed (collapsed to zero) in HCL space.

Usage

desaturate(col)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element of colors), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see rgb), or an integer i meaning palette()[i].

Details

Given colors are first transformed to RGB (either using hex2RGB or col2rgb) and then to HCL (polarLUV). In HCL, chroma is removed (i.e., collapsed to zero) and then the color is transformed back to a hexadecimal string.

Value

A character vector with (s)RGB codings of the colors in the palette.
hex

Convert Colors To Hexadecimal Strings

Description

This function converts “color” objects into hexadecimal strings.

Usage

hex(from, gamma = NULL, fixup = FALSE)

Arguments

from The color object to be converted.
gamma Deprecated.
fixup Should the color be corrected to a valid RGB value before correction. The default is to convert out-of-gamut colors to the string “NA”.

Examples

rainbow of colors and their desaturated counterparts
rainbow_hcl(12)
desaturate(rainbow_hcl(12))

convenience demo function
wheel <- function(col, radius = 1, ...)
 pie(rep(1, length(col)), col = col, radius = radius, ...)

compare base and colorspace palettes
(in color and desaturated)
par(mar = rep(0, 4), mfrow = c(2, 2))
rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
wheel(desaturate(rainbow_hcl(12)))
wheel(desaturate(rainbow(12)))

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

See Also

polarLUV, hex
hex2RGB

Details
The color objects are first converted to sRGB color objects. They are then multiplied by 255 and rounded to obtain an integer value. These values are then converted to hexadecimal strings of the form "#RRGGBB" and suitable for use as color descriptions for R graphics. Out of gamut values are either corrected to valid RGB values by translating the the individual primary values so that they lie between 0 and 255.

Value
A vector of character strings.

Author(s)
Ross Ihaka

See Also
hex2RGB, RGB, sRGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples
hsv = HSV(seq(0, 360, length = 7)[-7], 1, 1)
hsv
hex(hsv)
barplot(rep(1,6), col = hex(hsv))

hex2RGB Convert Hexadecimal Color Specifications To RGB Objects

Description
This function takes a vector of strings of the form "#RRGGBB" (hexadecimal color descriptions) into RGB objects.

Usage
hex2RGB(x, gamma = FALSE)

Arguments
x a vector of hexadecimal color descriptions.
gamma Whether to apply gamma-correction.

Details
This function converts device dependent color descriptions of the form "#RRGGBB" into sRGB color descriptions (linearized if gamma is TRUE).
HLS

Value

An RGB object describing the colors.

Author(s)

Ross Ihaka

See Also

hex, RGB, sRGB, HSV, XYZ, polarLAB, LUV, polarLUV.

Examples

hex2RGB(c("#FF0000","#00FF00","#0000FF"))

Description

This function creates colors of class HLS; a subclass of the virtual “color” class.

Usage

HLS(H, L, S, names)

Arguments

H, L, S These arguments give the hue, lightness, and saturation of the colors. The values can be provided in separate H, L and S vectors or in a three-column matrix passed as H.

names A vector of names for the colors (by default the row names of H are used).

Details

This function creates colors in the HLS color space which corresponds to the standard sRGB color space (IEC standard 61966). The hues should lie between between 0 and 360, and the lightness and saturations should lie between 0 and 1.

Value

An object of class “HLS” which inherits from class “color.”

Author(s)

Ross Ihaka
HSV

References

www.srgb.com

See Also

RGB, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

A rainbow of full-intensity hues
HLS(seq(0, 360, length=13)[-13], 0.5, 1)

HSV Create HSV Colors

Description

This function creates colors of class HSV; a subclass of the virtual “color” class.

Usage

HSV(H, S, V, names)

Arguments

H, S, V These arguments give the hue, saturation and value of the colors. The values can be provided in separate H, S and V vectors or in a three-column matrix passed as H.

names A vector of names for the colors (by default the row names of H are used).

Details

This function creates colors in the HSV color space which corresponds to the standard sRGB color space (IEC standard 61966). The hues should lie between between 0 and 360, and the saturations and values should lie between 0 and 1.

Value

An object of class “HSV” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com
See Also

`RGB, XYZ, LAB, polarLAB, LUV, polarLUV`.

Examples

```r
# A rainbow of full-intensity hues
HSV(seq(0, 360, length=13)[-13], 1, 1)
```

LAB
Create LAB Colors

Description

This function creates colors of class “LAB”; a subclass of the virtual “color” class.

Usage

```r
LAB(L, A, B, names)
```

Arguments

- `L, A, B` these arguments give the L, A and B coordinates of the colors. The values can be provided in separate L, A and B vectors or in a three-column matrix passed as L.
- `names` a vector of names for the colors (by default the row names of L are used).

Details

The L, A and B values give the coordinates of the colors in the CIE $L^*a^*b^*$ space. This is a transformation of the 1931 CIE XYZ space which attempts to produce perceptually based axes. Luminance takes values between 0 and 100, and the other coordinates take values between -100 and 100. The a and b coordinates measure positions on green/red and blue/yellow axes.

Value

An object of class “LAB” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

`RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV`.
LUV

Create **LUV** Colors

Description

This function creates colors of class "LUV"; a subclass of the virtual "color" class.

Usage

```r
LUV(L, U, V, names)
```

Arguments

- `L, U, V`
 - these arguments give the L, U and V coordinates of the colors. The values can be provided in separate L, U and V vectors or in a three-column matrix passed as `L`.
- `names`
 - a vector of names for the colors (by default the row names of `L` are used).

Details

The L, U and V values give the coordinates of the colors in the CIE (1976) \(L^*u^*v^*\) space. This is a transformation of the 1931 CIE XYZ space which attempts to produce perceptually based axes. Luminance takes values between 0 and 100, and the other coordinates take values between -100 and 100. The \(a\) and \(b\) coordinates measure positions on green/red and blue/yellow axes.

Value

An object of class "LUV" which inherits from class "color."

Author(s)

Ross Ihaka

See Also

`RGB, HSV, XYZ, LAB, polarLAB, polarLUV`.

Examples

```r
## Show the LAB space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LAB")
head(x)
head(y)
plot(y)
```
mixcolor

Compute the convex combination of two colors

Description

This function can be used to compute the result of color mixing (it assumes additive mixing).

Usage

mixcolor(alpha, color1, color2, where = class(color1))

Arguments

alpha The mixed color is obtained by combining an amount 1-alpha of color1 with an amount alpha of color2.
color1 The first color.
color2 The second color.
where The color space where the mixing is to take place.

Value

The mixed color. This is in the color space specified by where.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

mixcolor(0.5, RGB(1, 0, 0), RGB(0, 1, 0))

Examples

Show the LUV space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LUV")
head(x)
head(y)
plot(y)
polarLAB

Create polarLAB Colors

Description

This function creates colors of class "polarLAB"; a subclass of the virtual "color" class.

Usage

polarLAB(L, C, H, names)

Arguments

L, C, H these arguments give the L, C and H coordinates of the colors. The values can be provided in separate L, C and H vectors or in a three-column matrix passed as L.

names A vector of names for the colors (by default the row names of L are used).

Details

The polarLAB space is a transformation of the CIE $L^*a^*b^*$ space so that the a and b values are converted to polar coordinates. The radial component C measures chroma and the angular coordinate H is measures hue.

Value

An object of class "polarLAB" which inherits from class "color".

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

```r
## Show the polarLAB space
set.seed(1)
x <- rgb(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLAB")
head(x)
head(y)
plot(y)
```
Create polarLUV Colors

Description

This function creates colors of class “polarLUV”; a subclass of the virtual “color” class.

Usage

polarLUV(L, C, H, names)

Arguments

L, C, H
these arguments give the L, C and H coordinates of the colors. The values can be provided in separate L, C and H vectors or in a three-column matrix passed as L.

names
A vector of names for the colors (by default the row names of L are used).

Details

The polarLUV space is a transformation of the CIE $L^*u^*v^*$ space so that the u and v values are converted to polar coordinates. The radial component C measures chroma and the angular coordinate H is measures hue.

Value

An object of class “polarLUV” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

```r
## Show the polarLUV space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLUV")
head(x)
head(y)
plot(y)
```
Description

Color palettes based on the HCL and HSV color spaces.

Usage

rainbow_hcl(n, c = 50, l = 70, start = 0, end = 360*(n-1)/n, gamma = NULL, fixup = TRUE, alpha = 1, ...)

sequential_hcl(n, h = 260, c. = c(80, 0), l = c(30, 90), power = 1.5, gamma = NULL, fixup = TRUE, alpha = 1, ...)

heat_hcl(n, h = c(0, 90), c. = c(100, 30), l = c(50, 90), power = c(1/5, 1), gamma = NULL, fixup = TRUE, alpha = 1, ...)

terrain_hcl(n, h = c(130, 0), c. = c(80, 0), l = c(60, 95), power = c(1/10, 1), gamma = NULL, fixup = TRUE, alpha = 1, ...)

diverge_hcl(n, h = c(260, 0), c = 80, l = c(30, 90), power = 1.5, gamma = NULL, fixup = TRUE, alpha = 1, ...)

diverge_hsv(n, h = c(240, 0), s = 1, v = 1, power = 1, gamma = NULL, fixup = TRUE, alpha = 1, ...)

Arguments

n the number of colors (≥ 1) to be in the palette.
c, c. chroma value in the HCL color description.
l luminance value in the HCL color description.
start the hue at which the rainbow begins.
end the hue at which the rainbow ends.
h hue value in the HCL or HSV color description, has to be in [0, 360] for HCL and in [0, 1] for HSV colors.
s saturation value in the HSV color description.
v value value in the HSV color description.
power control parameter determining how chroma and luminance should be increased (1 = linear, 2 = quadratic, etc.).
gamma Deprecated.
fixup logical. Should the color be corrected to a valid RGB value before correction?
alpha numeric vector of values in the range [0, 1] for alpha transparency channel (0 means transparent and 1 means opaque).
... Other arguments passed to hex.
Details
All functions compute palettes based on either the HCL (polarluv) or the HSV (hsv) color space.
rainbow_hcl computes a rainbow of colors (qualitative palette) defined by different hues given a
single value of each chroma and luminance. It corresponds to rainbow which computes a rainbow
in HSV space.
sequential_hcl gives a sequential palette starting at the full color HCL(h, c[1], l[1]) through to
a light color HCL(h, c[2], l[2]) by interpolation.
diverge_hcl and diverge_hsv, compute a set of colors diverging from a neutral center (gray or
white, without color) to two different extreme colors (blue and red by default). This is similar to
cm.colors. For the diverging HSV colors, two hues h are needed, a maximal saturation s and a
fixed value v. The saturation is then varied to obtain the diverging colors. For the diverging HCL
colors, again two hues h are needed, a maximal chroma c and two luminances l. The colors are
then created by an interpolation between the full color HCL(h[1], c, l[1]), a neutral color HCL(h, 0, l[2]) and the other full color HCL(h[2], c, l[1]).

The palette heat_hcl gives an implementation of heat.colors in HCL space. By default, it goes
from a red to a yellow hue, while simultaneously going to lighter colors (i.e., increasing luminance)
and reducing the amount of color (i.e., decreasing chroma). The terrain_hcl palette simply calls
heat_hcl with different parameters, providing colors similar in spirit to terrain.colors. The
lighter colors are not strictly HCL colors, though.

Value
A character vector with (s)RGB codings of the colors in the palette.

Author(s)
Achim Zeileis <Achim.Zeileis@R-project.org>

References
pdf.

See Also
polarluv, hsv, hex

Examples
convenience demo functions
wheel <- function(col, radius = 1, ...)
 pie(rep(1, length(col)), col = col, radius = radius, ...)

pal <- function(col, border = "light gray")
{
 n <- length(col)
rainbow_hcl

```r
plot(0, 0, type="n", xlim = c(0, 1), ylim = c(0, 1), axes = FALSE, xlab = "", ylab = ")
rect(0:(n-1)/n, 0, 1:n/n, 1, col = col, border = border)
}

## qualitative palette
wheel(rainbow_hcl(12))

## a few useful diverging HCL palettes
par(mar = rep(0, 4), mfrow = c(4, 1))
pal(diverge_hcl(7))
pal(diverge_hcl(7, h = c(246, 40), c = 96, l = c(65, 90)))
pal(diverge_hcl(7, h = c(130, 43), c = 100, l = c(70, 90)))
pal(diverge_hcl(7, h = c(180, 70), c = 70, l = c(90, 95)))
pal(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95)))
pal(diverge_hcl(7, h = c(128, 330), c = 98, l = c(65, 90)))
pal(diverge_hcl(7, h = c(255, 330), l = c(40, 90)))
pal(diverge_hcl(7, c = 100, l = c(50, 90), power = 1))

## sequential palettes
pal(sequential_hcl(12))
pal(heat_hcl(12, h = c(0, -100), l = c(75, 40), c = c(40, 80), power = 1))
pal(terrain_hcl(12, c = c(65, 0), l = c(45, 95), power = c(1/3, 1.5)))
pal(heat_hcl(12, c = c(80, 30), l = c(30, 90), power = c(1/5, 1.5)))

## compare base and colorspace palettes
## (in color and desaturated)
par(mar = rep(0, 4), mfrow = c(2, 2))
## rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
whele(desaturate(rainbow_hcl(12))
whele(desaturate(rainbow(12))

## diverging red-blue colors
pal(diverge_hsv(7))
pal(diverge_hcl(7, c = 100, l = c(50, 90)))
pal(desaturate(diverge_hsv(7)))
pal(desaturate(diverge_hcl(7, c = 100, l = c(50, 90))))

## diverging cyan-magenta colors
pal(cm.colors(7))
pal(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95))
pal(desaturate(cm.colors(7)))
pal(desaturate(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95))))

## heat colors
pal(heat.colors(12))
pal(heat_hcl(12))
pal(desaturate(heat.colors(12))
pal(desaturate(heat_hcl(12)))

## terrain colors
pal(terrain.colors(12))
```
Description

This function reads a set of hexadecimal color descriptions from a file and creates a color object containing the corresponding colors.

Usage

readhex(file = "", class = "RGB")

Arguments

file The file containing the color descriptions.
class The kind of color object to be returned.

Details

The file is assumed to contain hexadecimal color descriptions of the form #RRGGBB.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka.

See Also

writehex, readRGB, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV

Examples

Not run:
rgb <- readhex("pastel.txt")
hsv <- readhex("pastel.txt", "HSV")

End(Not run)
Description

This function reads a set of RGB color descriptions (of the form written by gcolorsel) from a file and creates a color object containing the corresponding colors.

Usage

readRGB(file = "", class = "RGB")

Arguments

file The file containing the color descriptions.
class The kind of color object to be returned.

Details

The file is assumed to contain RGB color descriptions consisting of three integer values in the range from 0 to 255 followed by a color name.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka.

See Also

writehex, readhex, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Not run:
rgb <- readRGB("pastel.rgb")
hsv <- readRGB("pastel.rgb", "HSV")

End(Not run)
RGB

Create RGB Colors

Description

This function creates colors of class RGB; a subclass of the virtual “color” class.

Usage

RGB(R, G, B, names)

Arguments

R, G, B
these arguments give the red, green and blue intensities of the colors (the values should lie between 0 and 1). The values can be provided in separate R, G and B vectors or in a three-column matrix passed as R.

names
A vector of names for the colors (by default the row names of R are used).

Details

This function creates colors in the linearized sRGB color space (IEC standard 61966).

Value

An object of class “RGB” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com

See Also

sRGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Create a random set of colors
set.seed(1)
RGB(R = runif(20), G = runif(20), B = runif(20))
sRGB

Create sRGB Colors

Description

This function creates colors of class sRGB; a subclass of the virtual “color” class.

Usage

```
srgb(r, g, b, names)
```

Arguments

- `r, g, b`
 these arguments give the red, green and blue intensities of the colors (the values should lie between 0 and 1). The values can be provided in separate `r`, `g` and `b` vectors or in a three-column matrix passed as `R`.

- `names`
 A vector of names for the colors (by default the row names of `r` are used).

Details

This function creates colors in the standard sRGB color space (IEC standard 61966).

Value

An object of class “sRGB” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com

See Also

- `RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV`

Examples

```r
# Create a random set of colors
set.seed(1)
srgb(r = runif(20), g = runif(20), b = runif(20))
```
USSouthPolygon

Description

County polygons for Alabama, Georgia, and South Carolina plus an artificial variable used for coloring.

Usage

data("USSouthPolygon")

Format

A data frame with coordinates of the vertices of the county polygons (x, y) and an artificial variable z constructed for illustrating colored maps.

Source

Examples

```r
## generate color palette
pal <- diverge_hcl(9)
n <- length(pal)

## draw shaded polygons
plot(0, 0, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n",
     xlim = c(-88.5, -78.6), ylim = c(30.2, 35.2), asp = 1)
polygon(USSouthPolygon, col = pal[cut(na.omit(USSouthPolygon$z), breaks = 0:n/n)])
```
Arguments

- `x` a color object.
- `file` the name of the file to be written.

Details

This function converts the given color object to RGB and then writes hexadecimal strings (of the form `#RRGGBB`) representing the colors to the specified file.

Value

The name of the file is returned as the value of the function.

Author(s)

Ross Ihaka

See Also

`readhex`, `readRGB`, `hex2RGB`, `RGB`, `HSV`, `XYZ`, `LAB`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```r
set.seed(1)
x <- RGB(runif(10), runif(10), runif(10))
writehex(x, "random.txt")
```

Create XYZ Colors

Description

This function creates colors of class XYZ; a subclass of the virtual “color” class.

Usage

`XYZ(X, Y, Z, names)`

Arguments

- `X, Y, Z` these arguments give the X, Y and Z coordinates of the colors. The values can be provided in separate X, Y and Z vectors or in a three-column matrix passed as `X`.
- `names` A vector of names for the colors (by default the row names of `X` are used).
Details

The X, Y and Z values are the levels of the CIE primaries. These are scaled so that the luminance of the display white-point is 100. The white-point is taken to be D65, which means that its coordinates are 95.047, 100.000, 108.883.

Value

An object of class “XYZ” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

RGB, HSV, LAB, polarLAB, LUV, polarLUV.

Examples

```r
## Generate white in XYZ space
XYZ(95.047, 100.000, 108.883)
```
rgb. 5
RGB-class (color-class), 3

sequential_hcl, 2
sequential_hcl (rainbow_hcl), 15
show, color-method (color-class), 3
sRGB, 7, 8, 20, 21
sRGB-class (color-class), 3

terrain_hcl (rainbow_hcl), 15
USSouthPolygon, 22

writehex, 18, 19, 22

XYZ, 4, 5, 7–14, 18–21, 23, 23
XYZ-class (color-class), 3