Package ‘cctools’

March 19, 2019

Type Package
Title Tools for the Continuous Convolution Trick in Nonparametric Estimation
Version 0.1.2
Description Implements the uniform scaled beta distribution and the continuous convolution kernel density estimator.
License GPL-3
Encoding UTF-8
LazyData true
Imports stats, Rcpp (>= 0.12.5), qrng
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
Suggests testthat
NeedsCompilation yes
Author Thomas Nagler [aut, cre]
Maintainer Thomas Nagler <thomas.nagler@tum.de>
Repository CRAN
Date/Publication 2019-03-19 19:33:26 UTC

R topics documented:

- cctools-package .. 2
- cckde ... 2
- cont_conv .. 3
- dusb ... 4
- expand_as_numeric ... 5
- expand_names ... 6
- expand_vec .. 7

Index 8
Description

Implements the uniform scaled beta distribution `dusb()`, a generic function for continuous convolution `cont_conv()`, and the continuous convolution kernel density estimator `cckde()`.

Author(s)

Thomas Nagler

References

Usage

cckde(x, bw = NULL, mult = 1, theta = 0, nu = 5, ...)
dcckde(x, object)

S3 method for class 'cckde'
predict(object, newdata, ...)

Arguments

x a matrix or data frame containing the data (or evaluation points).
bw vector of bandwidth parameter; if NULL, the bandwidths are selected automatically by likelihood cross validation.
mult bandwidth multiplier; either a positive number or a vector of such. Each bandwidth parameter is multiplied with the corresponding multiplier.
theta scale parameter of the USB distribution (see, `dusb()`).
cont_conv

nu smoothness parameter of the USB distribution (see, dusb()). The estimator uses the Epanechnikov kernel for smoothing and the USB distribution for continuous convolution (default parameters correspond to the uniform distribution on \([-0.5, 0.5]\)).

... unused.

object cckde object.

newdata matrix or data frame containing evaluation points.

Details

If a variable should be treated as ordered discrete, declare it as ordered(), factors are expanded into discrete dummy codings.

References

Examples

```r
# dummy data with discrete variables
dat <- data.frame(
  F1 = factor(rbinom(10, 4, 0.1), 0:4),
  Z1 = ordered(rbinom(10, 5, 0.5), 0:5),
  Z2 = ordered(rpois(10, 1), 0:10),
  X1 = rnorm(10),
  X2 = rexp(10)
)

fit <- cckde(dat) # fit estimator
dcckde(dat, fit) # evaluate density
predict(fit, dat) # equivalent
```

cont_conv Continuous convolution

Description

Applies the continuous convolution trick, i.e. adding continuous noise to all discrete variables. If a variable should be treated as discrete, declare it as ordered() (passed to expand_as_numeric()).

Usage

```r
cont_conv(x, theta = 0, nu = 5, quasi = TRUE)
```
Arguments

- **x**: data; numeric matrix or data frame.
- **theta**: scale parameter of the USB distribution (see, `dusb()`).
- **nu**: smoothness parameter of the USB distribution (see, `dusb()`). The estimator uses the Epanechnikov kernel for smoothing and the USB for continuous convolution (default parameters correspond to the $U[-0.5, 0.5]$ distribution).
- **quasi**: logical indicating whether quasi random numbers should be used (`qrng::halton()`); only works for $\theta > 0$.

Details

The UPSB distribution (`dusb()`) is used as the noise distribution. Discrete variables are assumed to be integer-valued.

Value

A data frame with noise added to each discrete variable (ordered columns).

References

Examples

```r
# dummy data with discrete variables
dat <- data.frame(
  F1 = factor(rbinom(10, 4, 0.1), 0:4),
  Z1 = ordered(rbinom(10, 5, 0.5), 0:5),
  Z2 = ordered(rpois(10, 1), 0:10),
  X1 = rnorm(10),
  X2 = rexp(10)
)
pairs(dat)
pairs(expand_as_numeric(dat))  # expanded variables without noise
pairs(cont_conv(dat))         # continuously convoluted data
```

dusb

Uniform scaled beta distribution

Description

The uniform scaled beta (USB) distribution describes the distribution of the random variable

$$U_{b, \nu} = U + \theta(B - 0.5),$$

where U is a $U[-0.5, 0.5]$ random variable, B is a $Beta(\nu, \nu)$ random variable, and $\theta > 0, \nu \geq 1$.

```
Usage

dusb(x, theta = 0, nu = 5)

rusb(n, theta = 0, nu = 5, quasi = FALSE)

Arguments

x vector of quantiles.
theta scale parameter of the USB distribution.
nu smoothness parameter of the USB distribution.
n number of observations.
quasi logical indicating whether quasi random numbers (qrng::halton()) should be used for generating uniforms (which are then transformed by the quantile function)

References


Examples

# plot distribution
sq <- seq(-0.8, 0.8, by = 0.01)
plot(sq, dusb(sq), type = "l")
lines(sq, dusb(sq, theta = 0.25), col = 2)
lines(sq, dusb(sq, theta = 0.25, nu = 10), col = 3)

# simulate from the distribution
x <- rusb(100, theta = 0.3, nu = 0)

expand_as_numeric Numeric model matrix for continuous convolution

Description

Turns ordered variables into integers and expands factors as binary dummy codes. cont_conv() additionally adds noise to discrete variables, but this is only useful for estimation. [cc_prepare()] can be used to evaluate an already fitted estimate.

Usage

expand_as_numeric(x)
expand_names

Arguments

x a vector or data frame with numeric, ordered, or factor columns.

Value

A numeric matrix containing the expanded variables. It has additional type expanded_as_numeric and attr(, "i_disc") contains the indices of discrete variables.

Examples

# dummy data with discrete variables
dat <- data.frame(
  FI = factor(rbinom(100, 4, 0.1), 0:4),
  ZI = as.ordered(rbinom(100, 5, 0.5)),
  Z2 = as.ordered(rpois(100, 1)),
  XI = rnorm(100),
  X2 = rexp(100)
)
pairs(dat)
pairs(expand_as_numeric(dat)) # expanded variables without noise
pairs(cont_conv(dat)) # continuously convoluted data

Description

Expands each element according to the factor expansions of columns in expand_as_numeric().

Usage

expand_names(x)

Arguments

x as in expand_as_numeric().

Value

A vector of size ncol(expand_as_numeric(x)).
expand_vec

---

**Description**

Expands each element according to the factor expansions of columns in `expand_as_numeric()`.

**Usage**

```
expand_vec(y, x)
```

**Arguments**

- `y` a vector of length 1 or `ncol(x)`.
- `x` as in `expand_as_numeric()`.

**Value**

A vector of size `ncol(expand_as_numeric(x))`. 
Index

*Topic package
  cctools-package, 2

cckde, 2
cckde(), 2
ccctools (ccctools-package), 2
ccctools-package, 2
cont_conv, 3
cont_conv(), 2, 5
dcckde (cckde), 2
dcckde(), 2
dusb, 4
dusb(), 2–4
expand_as_numeric, 5
expand_as_numeric(), 3, 6, 7
expand_names, 6
expand_vec, 7
ordered(), 3
predict.cckde (cckde), 2
predict.cckde(), 2
qrng::ghalton(), 4, 5
rusb (dusb), 4