Package ‘aspi’

September 20, 2016

Type Package
Title Analysis of Symmetry of Parasitic Infections
Version 0.2.0
Date 2016-09-18
Author Matt Wayland
Maintainer Matt Wayland <mw283@cam.ac.uk>
Description Tools for the analysis and visualization of bilateral asymmetry in parasitic infections.
Depends R (>= 2.10)
License GPL-3
LazyData TRUE
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-20 18:46:39

R topics documented:

 aspi ... 2
 diplostomum_eyes_excl_lenses 2
 diplostomum_lenses .. 3
 eb.test .. 3
 g.test ... 4
 plotHistogram .. 5
 plotVolcano ... 6
 simulated_asymmetry_inconsistent_bias 7
 simulated_left_bias_heterogeneous_proportions 7
 simulated_left_bias_homogeneous_proportions 8
 simulated_symmetrical_infection 8

Index 9
Description

Tools for the analysis and visualization of bilateral asymmetry in parasitic infections.

Functions

- `g.test`
- `eb.test`
- `plotHistogram`
- `plotVolcano`

Data

- `diplostomum_eyes_excl_lenses`
- `diplostomum_lenses`
- `simulated_symmetrical_infection`
- `simulated_left_bias_homogeneous_proportions`
- `simulated_left_bias_heterogeneous_proportions`
- `simulated_asymmetry_inconsistent_bias`

Author(s)

Matt Wayland, <mw283@cam.ac.uk>

diplostomum_eyes_excl_lenses

Numbers of Diplostomum metacercariae recorded from the eyes (excluding lenses) of each of 50 ruffe.

Description

A dataset containing the numbers of Diplostomum metacercariae recovered from the eyes (excluding lenses) of each of 50 ruffe, Gymnocephalus cernuus from Llyn Tegid, a mesotrophic lake in north Wales.

Usage

diplostomum_eyes_excl_lenses
diplostomum_lenses

Format

A data frame with 50 rows and 2 variables (row names are host IDs):

- **left** number of metacercariae in left eye
- **right** number of metacercariae in the right eye

diplostomum_lenses

Numbers of Diplostomum metacercariae recorded from the lenses of the eyes of each of 50 ruffe.

Description

A dataset containing the numbers of Diplostomum metacercariae recovered from the lenses of the eyes of each of 50 ruffe, Gymnocephalus cernuus from Llyn Tegid, a mesotrophic lake in north Wales.

Usage

diplostomum_lenses

Format

A data frame with 50 rows and 2 variables (row names are host IDs):

- **left** number of metacercariae in lens of left eye
- **right** number of metacercariae in lens of right eye

eb.test

Exact binomial tests

Description

Assess symmetry of parasitic infections by performing exact binomial tests on pooled data and individual hosts.

Usage

eb.test(x)

Arguments

- **x** a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names.
Details
This function performs a binomial exact tests with the null hypothesis of a 1:1 ratio. It takes as its argument a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names. Uninfected hosts (zero count for both left and right sides) are ignored.

Value
It returns a list containing two elements:

- **pooled**: p-value for pooled binomial exact test (null hypothesis: the ratio of the total number of parasites from each side doesn’t differ from 1:1).
- **hosts**: data.frame of results of binomial exact tests performed on the distribution of parasites in each host.

Examples
```r
g.test(diplostomum_lenses)
```

g.test

Replicated G-tests of goodness-of-fit

Description
Perform replicated G-tests of goodness-of-fit to assess symmetry of parasitic infections.

Usage
```r
g.test(x)
```

Arguments
- **x**: a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names.

Details
This function implements Sokal & Rohlf’s (1995) G-test for the specific case of an expected 1:1 ratio. The function takes as its argument a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names. Uninfected hosts (zero count for both left and right sides) are ignored. Cannot be applied to data containing zero counts; use eb.test instead.
Value

A list containing two data.frames:

- **summary**: results of total, heterogeneity and pooled G-tests. Data frame has four columns: test, degrees of freedom, G-statistic and p-value.
- **hosts**: results of individual G-tests on distribution of parasites in each host. Data frame has seven columns: Host (ID), Left (count of parasites on left side), Right (count of parasites on right side), G (G-statistic), p (p-value), BH (p-value adjusted using Benjamini and Hochberg’s procedure for controlling the false discovery rate) and Holm (p-value adjusted using Holm’s method).

References

Examples

```r
g.test(diplostomum_eyes_excl_lenses)
```

plotHistogram

Plot histogram

Description

Creates a histogram showing distribution of fold differences in abundance of parasites between left and right sides of host.

Usage

```r
plotHistogram(x, nBreaks = 10, ...)
```

Arguments

- **x**: a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names.
- **nBreaks**: number of cells for the histogram. A suggestion only; breakpoints will be set to pretty values.
- **...**: optional further arguments and graphical parameters passed to plot.

Details

plot.Histogram creates a histogram showing distribution of fold differences in abundance of parasites between left and right sides. For each infected host the number of parasites on the right side is divided by the number of parasites on the left side, and the result binary log transformed. The log2 ratio will be negative if there are more parasites on the left than right and positive if there are more parasites on the right than left. A log2 ratio of one corresponds to a one-fold difference, i.e. double the number of parasites. Perfect symmetry is a log2 ratio of zero.
Examples

plotVolcano(diplostomum_eyes_excl_lenses)
plotVolcano(diplostomum_eyes_excl_lenses, nBreaks=20,
 main="Diplostomum metacercariae in eyes of ruffe")

plotVolcano

Volcano plot

Description

Produces scatterplot of statistical significance vs fold difference in parasite abundance between left and right.

Usage

plotVolcano(x, test = "G", pAdj = "BH", sigThresh = 0.05, ...)

Arguments

x
 a matrix or data frame with two numeric columns; first column is for left-side and 2nd column for right-side. Identifiers for hosts can be provided as row names.

test
 if set to "G" (default) a G-test is performed; otherwise an exact binomial test is performed.

pAdj
 method for correcting p-values for multiple comparisons. If set to "BH" (default), Benjamini & Hochberg's procedure is used to control the false discovery rate (FDR); otherwise Holm's method is used to control the familywise error rate (FWER).

sigThresh
 significance threshold (defaults to 0.05); p-values below this value will be called significant.

...
 optional further arguments and graphical parameters passed to plot.

Details

plotVolcano creates a volcano plot, i.e. a scatterplot of statistical significance (-log10(p-value)) vs fold difference (log2 ratio - as calculated for the histogram above) in parasite abundance between left and right. Each point in the scatterplot represents the parasite distribution in an individual host. A dashed horizontal line represents the user-defined p-value threshold for significance. If a parasite distribution deviates significantly from symmetry it is shown as a red square, otherwise as a blue circle.

Examples

plotVolcano(diplostomum_eyes_excl_lenses)
plotVolcano(diplostomum_eyes_excl_lenses, test="G", pAdj="BH", sigThresh=0.1,
 main="Diplostomum metacercariae in eyes of ruffe")
Simulated data showing bilateral asymmetry with inconsistent bias

Description
Simulated data for 10 hosts, providing an example of bilateral asymmetry with inconsistent bias.

Usage
simulated_asymmetry_inconsistent_bias

Format
A data frame with 10 rows and 2 variables:
- **left** number of parasites on the left side
- **right** number of parasites on the right side

Simulated data showing left bias with heterogeneous proportions

Description
Simulated data for 10 hosts, providing an example of bilateral asymmetry with left bias and the left:right ratio varying between hosts.

Usage
simulated_left_bias_heterogeneous_proportions

Format
A data frame with 10 rows and 2 variables:
- **left** number of parasites on the left side
- **right** number of parasites on the right side
simulated_left_bias_homogeneous_proportions

Simulated data for showing left bias with homogeneous proportions

Description
Simulated data for 10 hosts, providing an example of bilateral asymmetry with left bias and a similar left:right ratio in all hosts.

Usage
simulated_left_bias_homogeneous_proportions

Format
A data frame with 10 rows and 2 variables:

- **left** number of parasites on the left side
- **right** number of parasites on the right side

simulated_symmetrical_infection

Simulated data showing bilateral symmetry

Description
Simulated data for 10 hosts, providing an example of bilateral symmetry.

Usage
simulated_symmetrical_infection

Format
A data frame with 10 rows and 2 variables:

- **left** number of parasites on the left side
- **right** number of parasites on the right side
Index

*Topic datasets
 diplostomum_eyes_excl_lenses, 2
 diplostomum_lenses, 3
 simulated_asymmetry_inconsistent_bias, 7
 simulated_left_bias_heterogeneous_proportions, 7
 simulated_left_bias_homogeneous_proportions, 8
 simulated_symmetrical_infection, 8

aspi, 2
aspi-package (aspi), 2

diplostomum_eyes_excl_lenses, 2
diplostomum_lenses, 3

eb.test, 3

g.test, 4

plotHistogram, 5
plotVolcano, 6

simulated_asymmetry_inconsistent_bias, 7
simulated_left_bias_heterogeneous_proportions, 7
simulated_left_bias_homogeneous_proportions, 8
simulated_symmetrical_infection, 8