Package ‘LPWC’

January 23, 2020

Version 1.0.0

Title Lag Penalized Weighted Correlation for Time Series Clustering

Description

Depends R (>= 3.0.2)

Suggests testthat, rmarkdown, pkgdown, ggplot2, knitr, devtools

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

VignetteBuilder knitr

URL https://github.com/gitter-lab/LPWC

BugReports https://github.com/gitter-lab/LPWC/issues

Imports nleqslv

NeedsCompilation yes

Author Thevaa Chandereng [aut, cre, cph]
(https://orcid.org/0000-0003-4078-9176),
Anthony Gitter [aut, cph] (https://orcid.org/0000-0002-5324-9833)

Maintainer Thevaa Chandereng <chandereng@wisc.edu>

Repository CRAN

Date/Publication 2020-01-23 22:50:20 UTC

R topics documented:

best.lag ... 2
comp.corr ... 3
corr.bestlag .. 4
best.lag

findC .. 5
prep.data .. 5
score .. 6
simdata ... 7
weight .. 7
weight.lag ... 8
wt.corr ... 9

Index

best.lag 10

Description

best.lag computes the best lags for a dataset using weighted correlation. The lags obtained are in reference to the original timepoints.

Usage

best.lag(data, timepoints, max.lag = NULL, C)

Arguments

data a matrix or data frame with rows representing genes and columns representing different timepoints. If data is a data frame, the gene names can be specified using the row.names().
timepoints a vector of time points used in the dataset
max.lag a numeric value of the maximum lag allowed, if null, defaults to the floor of the number of timepoints divided by 4
C a numeric value of C used in computing weighted correlation

Value

a vector of best lags used in the dataset, one per gene

Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

best.lag(data = array(rnorm(20), c(4, 5)), timepoints = c(0, 5, 10, 20, 40), C = 300)
best.lag(data = array(runif(100), c(5, 20)), timepoints = seq(2, 40, 2), C = 10)
best.lag(data = array(runif(100), c(5, 20)), timepoints = seq(2, 40, 2), max.lag = 2, C = 10)
comput.corr

Computing corr

Description
This function computes the weighted correlation with a penalty for lags. It should only be used after the fixed lags have already been applied to the dataset and timepoints using the functions prep.data() and best.lag().

Usage
comp.corr(data, time, C)

Arguments
data
a lagged matrix or data frame with rows representing genes and columns representing different timepoints (NAs added when lags are needed)
time
a lagged matrix with rows representing each gene’s timepoint and columns representing the number of timepoints, NA is introduced when it is lagged
C
a numeric value of C used in computing weighted correlation

Value
a similarity matrix with values between -1 and 1 (1 highly correlated, 0 no correlation)

Author(s)
Thevaa Chandereng, Anthony Gitter

Examples
This function computes the correlation after the lags (or shifts) have been computed. In this example, the lags argument is randomly sampled for the sake of illustrating how prep.data() applies the lags and prepares a transformed dataset for comp.corr().
lagged <- prep.data(array(rnorm(30), c(3, 10)), timepoints = seq(0, 45, 5), lags = sample(c(0, 1, -1, 2, -2), size = 3))
comp.corr(data = lagged$data, time = lagged$time, C = 10)

This example shows how comp.corr is used in practice with real data. The best.lag() function is called first to pre-compute the lags, which are passed to prep.data().
randdata <- array(rnorm(120), c(10, 12))
bl <- best.lag(data = randdata, timepoints = 1:12, C = 5)
lag.data <- prep.data(randdata, timepoints = 1:12, lags = bl)
comp.corr(lag.data$data, time = lag.data$time, C = 5)
corr.bestlag

Computes best lag correlation

Description

This function computes correlation based on best picked lags. The lags indicate delayed changes.

Usage

```
corr.bestlag(data, timepoints, max.lag = NULL, C = NULL, penalty = "high", iter = 10)
```

Arguments

- `data`: a matrix or data frame with rows representing genes and columns representing different timepoints. If data is a data frame, the gene names can be specified using the `row.names()`.
- `timepoints`: a vector of time points used in the dataset
- `max.lag`: a integer value of the maximum lags allowed in the dataset, if null, defaults to the floor of the number of timepoints divided by 4
- `C`: a numeric value of C used in computing weighted correlation, if null, a default is computed based on the penalty argument
- `penalty`: a factor with two levels high and low penalty on the weighted correlation
- `iter`: an integer indicating the number of C values to test for low penalty

Value

a list containing weighted correlation and best lags used in each row

Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

```
corr.bestlag(array(rnorm(30), c(5, 6)), max.lag = 1, timepoints = c(0, 5, 10, 15, 20, 25), C = 10, penalty = "high")
corr.bestlag(array(runif(40, 0, 20), c(4, 10)), timepoints = c(0, 0.5, 1.5, 3, 6, 12, 18, 26, 39, 50), penalty = "high")
corr.bestlag(matrix(data = rexp(n = 40, 2), nrow = 8), timepoints = c(0, 5, 15, 20, 40), penalty = "low", iter = 5)
```
findC

Finding best C

Description

This function computes the values of C to test using the timepoints and max lag in the dataset.

Usage

findC(timepoints, max.lag = NULL, pi = 0.95, iter = 10)

Arguments

- timepoints: a vector of timepoints used in the dataset.
- max.lag: a numeric value with maximum lags allowed, if null, defaults to the floor of the number of timepoints divided by 4.
- pi: a numeric value between 0.5 and 1 for the upper bound on the penalty.
- iter: a numeric value with the number of penalties to test.

Value

A vector of length iter of the different values of C to test.

Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

findC(c(0, 5, 10, 15, 20, 25), max.lag = 1, iter = 15)
findC(c(2, 4, 8, 16, 64, 128, 256), iter = 5)
findC(c(2, 6, 10, 15, 22, 30, 40, 55, 80), pi = 0.8, iter = 20)
findC(c(1, 2, 3.2, 4, 5.3, 7), pi = 0.99)

prep.data

Preparing Data

Description

This function prepares the data to compute correlation by introducing NA’s when lags are needed.

Usage

prep.data(data, lags, timepoints)
Arguments

data a matrix or data frame with rows representing genes and columns representing different timepoints. If data is a data frame, the gene names can be specified using the row.names().

lags a vector of same length as the number of rows in the data column indicating the best lags

timepoints a vector of time points used in the dataset

Value

a list of two matrices, one matrix with NA’s for the lags for the dataset and another matrix with the timepoints used for each row in the dataset

Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

pred.data(array(rnorm(20), c(5, 4)), c(0, 0, 0, -1, 1),
 timepoints = c(0, 5, 15, 30))
pred.data(array(runif(100, 0, 10), c(10, 10)), sample((-2:2), size = 10, replace = TRUE),
 timepoints = c(0, 5, 15, 30, 45, 60, 75, 80, 100, 120))

<table>
<thead>
<tr>
<th></th>
<th>Score of Lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>Score of Lags</td>
</tr>
</tbody>
</table>

Description

This function computes the score of best lags by summing the correlation of corresponding lags

Usage

score(corr, lags)

Arguments

corr a vector of computed correlation

lags a vector of same length with corr that holds the lags corresponding to the corr vector

Value

a numerical value of best lag picked based on corr and lags
Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

```r
score(runif(10, 0, 1), c(2, 0, 0, 0, 3, 2, -1, 2, 0, 1))
score(runif(20, 0.5, 0.8), sample(-3:3, size = 20, replace = TRUE))
```

simdata
Example datasets for LPC

Description

Data is simulated from ImpulseDE function with 8 timepoints c(0, 2, 4, 6, 8, 18, 24, 32, 48, 72) See https://doi.org/10.1093/bioinformatics/btw665

Usage

```r
simdata
```

Format

data matrix

Examples

```r
data(simdata)
```

weight
Weight in correlation

Description

This function computes the weight used for correlation using timepoints used and lags used

Usage

```r
weight(t, lag, C)
```
weight.lag

Arguments

- **t**: a vector of timepoints
- **lag**: an integer value of the lag used
- **C**: a numeric of the constant used in the penalty and weight inside the Gaussian kernel

Value

- A list containing w0 and vector w used for computing weighted correlation

Author(s)

Thevaa Chandereng, Anthony Gitter

Examples

- `weight(t = c(0, 5, 10, 15, 20), lag = 1, C = 20)`
- `weight(t = c(0, 2, 5, 10, 14, 19, 22), lag = 1, C = 100)`

weight.lag

Weight Lag

Description

This function matches vectors of two different lengths

Usage

- `weight.lag(x1, x2)`

Arguments

- **x1**: a vector
- **x2**: a vector

Value

- A matrix with two rows with the shortest length of the vector as the number of columns

Author(s)

Thevaa Chandereng, Anthony Gitter
wt.corr

Examples

weight.lag(1:5, 2:9)
weight.lag(seq(0, 10, 2), seq(4, 10, 2))

wt.corr | Weighted correlation

Description

This function computes weighted Pearson correlation between two vectors with weights given. The output is between -1 and 1 with 1 being highly positively correlated, -1 being highly negatively correlated, and 0 being no correlation.

Usage

wt.corr(x, y, w)

Arguments

x | a vector
y | a vector with same length of x
w | a vector with same length of x and y

Value

a numerical value of weighted Pearson correlation

Source

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#Weighted_correlation_coefficient

Examples

wt.corr(c(1, 2, -9, 4, 5), c(2:6), c(0.5, 1, 2, 0.5, 2))
wt.corr(rnorm(5), rnorm(5), runif(5, 0, 1))
Index

*Topic datasets
 simdata, 7
best.lag, 2
comp.corr, 3
corr.bestlag, 4
findC, 5
prep.data, 5
score, 6
simdata, 7
weight, 7
weight.lag, 8
wt.corr, 9