Package ‘GauPro’

September 11, 2017

Type Package
Title Gaussian Process Fitting
Version 0.2.2
Author Collin Erickson
Maintainer Collin Erickson <collinberickson@gmail.com>

Description Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an 'R6' object and can be easily updated with new data. There are options to run in parallel (not for Windows), and 'Rcpp' has been used to speed up calculations. Other R packages that perform similar calculations include 'laGP', 'DiceKriging', 'GPfit', and 'mlegp'.

License GPL-3
LazyData TRUE

LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, R6, lbfgs

RoxygenNote 6.0.1

Suggests testthat, knitr, rmarkdown, microbenchmark, numDeriv, MASS

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-09-11 08:22:23 UTC

R topics documented:

*.GauPro_kernel .. 2
+.GauPro_kernel .. 3
corr_gauss_matrix ... 3
corr_gauss_matrix_symC 4
corr_gauss_matrix_sym_armaC 5
Exponential .. 5
GauPro .. 6
Description

Kernel product

Usage

```r
## S3 method for class 'GauPro_kernel'
k1 * k2
```

Arguments

- `k1`: First kernel
- `k2`: Second kernel

Value

Kernel which is product of two kernels
Kernel sum

Description

Kernel sum

Usage

```r
# S3 method for class 'GauPro_kernel'
k1 + k2
```

Arguments

- `k1`: First kernel
- `k2`: Second kernel

Value

Kernel which is sum of two kernels

Examples

```r
k1 <- Exponential$new(beta=1)
k2 <- Matern$new(beta=0)
k <- k1 * k2
k$k(matrix(c(2,1), ncol=1))
```

Gaussian correlation

Description

Gaussian correlation

Usage

```r
corr_gauss_matrix(x, x2 = NULL, theta)
```

Examples

```r
k1 <- Exponential$new(beta=1)
k2 <- Matern$new(beta=0)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))
```
Arguments

- `x` First data matrix
- `x2` Second data matrix
- `theta` Correlation parameter

Value

Correlation matrix

Examples

```r
corr_gauss_matrix(matrix(1:10, ncol=1), matrix(6:15, ncol=1), 1e-2/(1:10))
```

corr_gauss_matrix_symC

Correlation Gaussian matrix in C (symmetric)

Description

Correlation Gaussian matrix in C (symmetric)

Usage

```r
corr_gauss_matrix_symC(x, theta)
```

Arguments

- `x` Matrix x
- `theta` Theta vector

Value

Correlation matrix

Examples

```r
corr_gauss_matrix_symC(matrix(c(1,0,0,1),2,2), c(1,1))
```
Correlation Gaussian matrix in C using Armadillo (symmetric)

Description

Correlation Gaussian matrix in C using Armadillo (symmetric)

Usage

```
corr_gauss_matrix_sym_armaC(x, theta)
```

Arguments

- `x`: Matrix x
- `theta`: Theta vector

Value

Correlation matrix

Examples

```
corr_gauss_matrix_sym_armaC(matrix(c(QLPLPLQ)LRLR)Lc(QLQ))
```

Exponential Kernel R6 class

Description

Exponential Kernel R6 class

Usage

```
Exponential
```

Format

```
R6Class object.
```

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```
k1 <- Exponential$new(beta=0)
```
GauPro

GauPro_selector

Description

GauPro_selector

Usage

GauPro(..., type = "Gauss")

Arguments

- ... Pass on
- type Type of Gaussian process, or the kind of correlation function.

Value

A GauPro object

Examples

```r
n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
#y <- sin(2*pi*x) + rnorm(n,0,1e-1)
y <- (2*x) %% 1
gp <- GauPro(x=x, y=y, parallel=FALSE)
```

GauPro_base

Class providing object with methods for fitting a GP model

Description

Class providing object with methods for fitting a GP model

Usage

GauPro_base

Format

R6Class object.

Value

Object of *R6Class* with methods for fitting GP model.
Fields

- **X** Design matrix
- **Z** Responses
- **N** Number of data points
- **D** Dimension of data
- **corr** Type of correlation function
- **nug.min** Minimum value of nugget
- **nug** Value of the nugget, is estimated unless told otherwise
- **separable** Are the dimensions separable?
- **verbose** 0 means nothing printed, 1 prints some, 2 prints most.
- **useGrad** Should grad be used?
- **useC** Should C code be used?
- **parallel** Should the code be run in parallel?
- **parallel_cores** How many cores are there? It will self detect, do not set yourself.

Methods

Documentation For full documentation of each method go to https://github.com/lightning-viz/lightining-r/

```r
gaupro_gauss
```

This method is used to create object of this class with `X` and `Z` as the data.

```r
update(Xnew=NULL, Znew=NULL, Xall=NULL, Zall=NULL, restarts = 5, param_update = T, nug.update = sel)
```

This method updates the model, adding new data if given, then running optimization again.

Examples

```r
n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
y <- sin(2*pi*x) + rnorm(n,0,1e-1)
geps <- GauPro(x=x, y=y, parallel=FALSE)
```

GauPro_Gauss

Corr Gauss GP using inherited optim

Description

Corr Gauss GP using inherited optim

Usage

GauPro_Gauss
Format

 R6Class object.

Value

Object of *R6Class* with methods for fitting GP model.

Examples

```r
n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
y <- sin(2*pi*x) + rnorm(n,0,1e-1)
gp <- GauPro(x=x, y=y, parallel=FALSE)
```

GauPro_kernel

Kernel R6 class

Description

Kernel R6 class

Usage

GauPro_kernel

Format

R6Class object.

Value

Object of *R6Class* with methods for fitting GP model.

Examples

```r
#k <- GauPro_kernel$new()
```
GauPro_kernel_beta
Beta Kernel R6 class

Description

This is the base structure for a kernel that uses $\beta = \log_{10}(\theta)$ for the lengthscale parameter. It standardizes the params because they all use the same underlying structure. Kernels that inherit this only need to implement k and $dC_dparams$.

Usage

GauPro_kernel_beta

Format

R6Class object.

Value

Object of *R6Class* with methods for fitting GP model.

Examples

```r
# k1 <- Matern52$new(beta=0)
```

GauPro_kernel_model
GauPro model that uses kernels

Description

Class providing object with methods for fitting a GP model. Allows for different kernel and trend functions to be used.

Usage

GauPro_kernel_model

Format

R6Class object.

Value

Object of *R6Class* with methods for fitting GP model.
Fields

- **X** Design matrix
- **Z** Responses
- **N** Number of data points
- **D** Dimension of data
- **corr** Type of correlation function
- **nug.min** Minimum value of nugget
- **nug** Value of the nugget, is estimated unless told otherwise
- **separable** Are the dimensions separable?
- **verbose** 0 means nothing printed, 1 prints some, 2 prints most.
- **useGrad** Should grad be used?
- **useC** Should C code be used?
- **parallel** Should the code be run in parallel?
- **parallel_cores** How many cores are there? It will self detect, do not set yourself.

Methods

Documentation For full documentation of each method go to https://github.com/lightning-viz/lightining-r/

- `new(xL ZL corr\"gauss\"L verbose\]PL separable\]tL usec\]fLusegrad\]tL parallel\]tL nug\]nest\]tL NNN)`
 This method is used to create object of this class with `x` and `Z` as the data.

- `update(xnew=NULLL Znew=NULLL Xall=NULLL Zall=NULLL, restarts = 5, param_update = T, nug.update = sel)`
 This method updates the model, adding new data if given, then running optimization again.

Examples

```r
n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
y <- sin(2*pi*x) + rnorm(n,0,1e-1)
gp <- GauPro_kernel_model$new(X=x, Z=y, kernel=Gaussian$new(1), parallel=FALSE)
gp$predict(.454)
```

GauPro_trend

Trend R6 class

Description

Trend R6 class

Usage

GauPro_trend
Gaussian

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
# k <- GauPro_trend$new()
```

Gaussian

Gaussian Kernel R6 class

Description

Gaussian Kernel R6 class

Usage

Gaussian

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
k1 <- Gaussian$new(beta=0)
```
Gaussian_devianceC Calculate the Gaussian deviance in C

Description
Calculate the Gaussian deviance in C

Usage
Gaussian_devianceC(theta, nug, X, Z)

Arguments
theta Theta vector
nug Nugget
X Matrix X
Z Matrix Z

Value
Correlation matrix

Examples
Gaussian_devianceC(c(1,1), 1e-8, matrix(c(1,0,0,1),2,2), matrix(c(1,0,2,1)))

Gaussian_hessianC Calculate Hessian for a GP with Gaussian correlation

Description
Calculate Hessian for a GP with Gaussian correlation

Usage
Gaussian_hessianC(XX, X, Z, Kinv, mu_hat, theta)

Arguments
XX The vector at which to calculate the Hessian
X The input points
Z The output values
Kinv The inverse of the correlation matrix
mu_hat Estimate of mu
theta Theta parameters for the correlation
Gaussian_hessianCC

Value

Matrix, the Hessian at XX

Examples

```r
set.seed(0)
n <- 40
x <- matrix(runif(n*2), ncol=2)
f1 <- function(a) {sin(2*pi*a[1]) + sin(6*pi*a[2])}
y <- apply(x,1,f1) + rnorm(n,0,.01)
gp <- GauPro(x,y, verbose=2, parallel=FALSE);gp$theta
gp$hessian(c(.2,.75), useC=TRUE) # Should be -38.3, -5.96, -5.96, -389.4 as 2x2 matrix
```

Gaussian_hessianCC Gaussian hessian in C

Description

Gaussian hessian in C

Usage

Gaussian_hessianCC(XX, X, Z, Kinv, mu_hat, theta)

Arguments

- **XX**: point to find Hessian at
- **X**: matrix of data points
- **Z**: matrix of output
- **Kinv**: inverse of correlation matrix
- **mu_hat**: mean estimate
- **theta**: correlation parameters

Value

Hessian matrix
Gaussian_hessianR

Calculate Hessian for a GP with Gaussian correlation

Description

Calculate Hessian for a GP with Gaussian correlation

Usage

Gaussian_hessianR(XX, X, Z, Kinv, mu_hat, theta)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>The vector at which to calculate the Hessian</td>
</tr>
<tr>
<td>X</td>
<td>The input points</td>
</tr>
<tr>
<td>Z</td>
<td>The output values</td>
</tr>
<tr>
<td>Kinv</td>
<td>The inverse of the correlation matrix</td>
</tr>
<tr>
<td>mu_hat</td>
<td>Estimate of mu</td>
</tr>
<tr>
<td>theta</td>
<td>Theta parameters for the correlation</td>
</tr>
</tbody>
</table>

Value

Matrix, the Hessian at XX

Examples

```r
set.seed(0)
n <- 40
x <- matrix(runif(n*2), ncol=2)
f1 <- function(a) {sin(2*pi*a[1]) + sin(6*pi*a[2])}
y <- apply(x,1,f1) + rnorm(n,0,.01)
gp <- GauPro(x,y, verbose=2, parallel=FALSE); gp$theta
gp$hessian(c(0.2,.75), useC=FALSE) # Should be -38.3, -5.96, -5.96, -389.4 as 2x2 matrix
```

kernel_product

Gaussian Kernel R6 class

Description

Gaussian Kernel R6 class

Usage

kernel_product
kernel_sum

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))
```

Description

Gaussian Kernel R6 class

Usage

`kernel_sum`

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))
```
Matern32

Matern 3/2 Kernel R6 class

Description

Matern 3/2 Kernel R6 class

Usage

Matern32

Format

R6Class object.

Value

Object of R6Class with methods for fitting GP model.

Examples

k1 <- Matern32$new(beta=0)

Matern52

Matern 5/2 Kernel R6 class

Description

Matern 5/2 Kernel R6 class

Usage

Matern52

Format

R6Class object.

Value

Object of R6Class with methods for fitting GP model.

Examples

k1 <- Matern52$new(beta=0)
Periodic Kernel R6 class

Description
Periodic Kernel R6 class

Usage
Periodic

Format
R6Class object.

Value
Object of R6Class with methods for fitting GP model.

Examples
k1 <- Periodic$new(p=1, alpha=1)

plot.GauPro
Plot for class GauPro

Description
Plot for class GauPro

Usage
S3 method for class 'GauPro'
plot(x, ...)

Arguments
x Object of class GauPro
...
Additional parameters

Value
Nothing
Examples

n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
y <- sin(2*pi*x) + rnorm(n,0,1e-1)
gp <- GauPro(X=x, Z=y, parallel=FALSE)
if (requireNamespace("MASS", quietly = TRUE)) {
 plot(gp)
}

predict.GauPro

Predict for class GauPro

Description

Predict for class GauPro

Usage

S3 method for class 'GauPro'
predict(object, XX, se.fit = F, covmat = F,
 split_speed = T, ...)

Arguments

object Object of class GauPro
XX new points to predict
se.fit Should standard error be returned (and variance)?
covmat Should the covariance matrix be returned?
split_speed Should the calculation be split up to speed it up?
... Additional parameters

Value

Prediction from object at XX

Examples

n <- 12
x <- matrix(seq(0,1,length.out = n), ncol=1)
y <- sin(2*pi*x) + rnorm(n,0,1e-1)
gp <- GauPro(X=x, Z=y, parallel=FALSE)
predict(gp, .448)
RatQuad

Rational Quadratic Kernel R6 class

Description
Rational Quadratic Kernel R6 class

Usage
RatQuad

Format
R6Class object.

Value
Object of *R6Class* with methods for fitting GP model.

Examples
```r
k1 <- RatQuad$new(beta=0, alpha=0)
```

trend_0

Trend R6 class

Description
Trend R6 class

Usage
trend_0

Format
R6Class object.

Value
Object of *R6Class* with methods for fitting GP model.

Examples
```r
t1 <- trend_0$new()
```
trend_c

Trend R6 class

Description

Trend R6 class

Usage

trend_c

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
t1 <- trend_c$new()
```

trend_LM

Trend R6 class

Description

Trend R6 class

Usage

trend_LM

Format

`R6Class` object.

Value

Object of `R6Class` with methods for fitting GP model.

Examples

```r
t1 <- trend_LM$new(D=2)
```
Index

*Topic Gaussian
 Exponential, 5
 GauPro_base, 6
 GauPro_Gauss, 7
 GauPro_kernel, 8
 GauPro_kernel_beta, 9
 GauPro_kernel_model, 9
 GauPro_trend, 10
 Gaussian, 11
 kernel_product, 14
 kernel_sum, 15
 Matern32, 16
 Matern52, 16
 Periodic, 17
 RatQuad, 19
 trend_0, 19
 trend_c, 20
 trend_LM, 20

*Topic data,
 Exponential, 5
 GauPro_base, 6
 GauPro_Gauss, 7
 GauPro_kernel, 8
 GauPro_kernel_beta, 9
 GauPro_kernel_model, 9
 GauPro_trend, 10
 Gaussian, 11
 kernel_product, 14
 kernel_sum, 15
 Matern32, 16
 Matern52, 16
 Periodic, 17
 RatQuad, 19
 trend_0, 19
 trend_c, 20
 trend_LM, 20

*Topic kriging,
 Exponential, 5
 GauPro_base, 6
 GauPro_Gauss, 7
 GauPro_kernel, 8
 GauPro_kernel_beta, 9

*Topic process,
 Exponential, 5
 GauPro_base, 6
 GauPro_Gauss, 7
 GauPro_kernel, 8
 GauPro_kernel_beta, 9
 GauPro_kernel_model, 9
 GauPro_trend, 10
 Gaussian, 11
 kernel_product, 14
 kernel_sum, 15
 Matern32, 16
 Matern52, 16
 Periodic, 17
 RatQuad, 19
 trend_0, 19
 trend_c, 20
 trend_LM, 20

*Topic regression
 Exponential, 5
 GauPro_base, 6
 GauPro_Gauss, 7
 GauPro_kernel, 8
 GauPro_kernel_beta, 9
GauPro_kernel_model, 9
GauPro_trend, 10
Gaussian, 11
kernel_product, 14
kernel_sum, 15
Matern32, 16
Matern52, 16
Periodic, 17
RatQuad, 19
trend_0, 19
trend_c, 20
trend_LM, 20
*.GauPro_kernel, 2
+.GauPro_kernel, 3
corr_gauss_matrix, 3
corr_gauss_matrix_sym armaC, 5
corr_gauss_matrix_symC, 4
Exponential, 5
GauPro, 6
GauPro_base, 6
GauPro_Gauss, 7
GauPro_kernel, 8
GauPro_kernel_beta, 9
GauPro_kernel_model, 9
GauPro_trend, 10
Gaussian, 11
Gaussian_devianceC, 12
Gaussian_hessianC, 12
Gaussian_hessianCC, 13
Gaussian_hessianR, 14
kernel_product, 14
kernel_sum, 15
Matern32, 16
Matern52, 16
Periodic, 17
dotPlot_GauPro, 17
dotsPredict_GauPro, 18
R6Class, 5, 6, 8, 9, 11, 15–17, 19, 20
RatQuad, 19
trend_0, 19
trend_c, 20
trend_LM, 20