Package ‘EdSurvey’

January 10, 2020

Version 2.4.0
Date 2020-01-10
Title Analysis of NCES Education Survey and Assessment Data
Author Paul Bailey [aut, cre],
 Ahmad Emad [aut],
 Huade Huo [aut],
 Michael Lee [aut],
 Yuqi Liao [aut],
 Alex Lishinski [aut],
 Trang Nguyen [aut],
 Qingshu Xie [aut],
 Jiao Yu [aut],
 Ting Zhang [aut],
 Jeppe Bundsgaard [ctb],
 Ren C’deBaca [ctb]
Maintainer Paul Bailey <pbailey@air.org>
Depends R (>= 3.5.0), car, ifactors (>= 1.0.3)
Imports data.table (>= 1.11.4), Formula, glm2, haven, LmF, lme4, MASS,
 Matrix, methods, NAEPprimer, RColorBrewer, readr, rvest,
 stringi, stringr, tibble, readxl, xml2, xtable, wCorr, WeMix
 (>= 3.1.3), quantreg
URL https://www.air.org/project/nces-data-r-project-edsurvey
Description
 Read in and analyze functions for education survey and assessment data from the National Center for Education Statistics (NCES) <https://nces.ed.gov/>, including National Assessment of Educational Progress (NAEP) data <https://nces.ed.gov/nationsreportcard/> and data from the International Assessment Database: Organisation for Economic Co-operation and Development (OECD) <https://www.oecd.org/>, including Programme for International Student Assessment (PISA), Teaching and Learning International Survey (TALIS), Programme for the International Assessment of Adult Competencies (PIAAC), and International Association for the Evaluation of Educational Achievement (IEA) <https://www.iea.nl/>, including Trends in International Mathematics and Science Study (TIMSS), TIMSS Advanced, Progress in International Reading Literacy Study (PIRLS), International Civic and Citizenship Study (ICCS), International Computer and Information Literacy Study (ICILS), and Civic Education Study (CivEd).
License GPL-2

VignetteBuilder knitr

Suggests dplyr, knitr, testthat, withr

LazyData true

ByteCompile true

RoxygenNote 7.0.2

Note This publication was prepared for NCES under Contract No. ED-IES-12-D-0002 with the American Institutes for Research. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2020-01-10 22:50:05 UTC

R topics documented:

EdSurvey-package ... 4
achievementLevels ... 4
as.data.frame ... 8
cbind ... 9
contourPlot ... 10
cor.sdf ... 11
dim.edsurvey.data.frame .. 14
DoFCorrection ... 15
downloadCivilDICCS .. 16
downloadECLS_K .. 17
downloadELS ... 18
downloadHLSLS .. 19
downloadICILS ... 20
downloadPIAAC ... 21
downloadPIRLS ... 22
downloadPISA ... 23
downloadTALIS ... 24
downloadTIMSS ... 25
downloadTIMSSAdv ... 26
download_ePIRLS .. 27
edsurvey.data.frame ... 28
edsurvey.data.frame.list .. 32
edsurveyTable ... 35
edsurveyTable2pdf .. 38
gap ... 40
getData ... 47
getPlausibleValue .. 50
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>getWeightJkReplicates</td>
<td>51</td>
</tr>
<tr>
<td>glm.sdf</td>
<td>52</td>
</tr>
<tr>
<td>hasPlausibleValue</td>
<td>56</td>
</tr>
<tr>
<td>isWeight</td>
<td>57</td>
</tr>
<tr>
<td>levelsSDF</td>
<td>58</td>
</tr>
<tr>
<td>lm.sdf</td>
<td>59</td>
</tr>
<tr>
<td>merge</td>
<td>63</td>
</tr>
<tr>
<td>mixed.sdf</td>
<td>64</td>
</tr>
<tr>
<td>mvrlm.sdf</td>
<td>67</td>
</tr>
<tr>
<td>oddsRatio</td>
<td>71</td>
</tr>
<tr>
<td>percentile</td>
<td>72</td>
</tr>
<tr>
<td>print.achievementLevels</td>
<td>75</td>
</tr>
<tr>
<td>print.edsurvey.data.frame</td>
<td>76</td>
</tr>
<tr>
<td>print.gap</td>
<td>76</td>
</tr>
<tr>
<td>readBB_2001</td>
<td>77</td>
</tr>
<tr>
<td>readBB_2003</td>
<td>78</td>
</tr>
<tr>
<td>readBB_2012</td>
<td>80</td>
</tr>
<tr>
<td>readBPS_1994</td>
<td>81</td>
</tr>
<tr>
<td>readBPS_2001</td>
<td>82</td>
</tr>
<tr>
<td>readBPS_2009</td>
<td>84</td>
</tr>
<tr>
<td>readBPS_2014</td>
<td>85</td>
</tr>
<tr>
<td>readCivEDICCS</td>
<td>86</td>
</tr>
<tr>
<td>readECLS_K1998</td>
<td>88</td>
</tr>
<tr>
<td>readECLS_K2011</td>
<td>90</td>
</tr>
<tr>
<td>readELS</td>
<td>91</td>
</tr>
<tr>
<td>readHSB_Senior</td>
<td>93</td>
</tr>
<tr>
<td>readHSB_Sophomore</td>
<td>94</td>
</tr>
<tr>
<td>readHSLs</td>
<td>96</td>
</tr>
<tr>
<td>readICILS</td>
<td>97</td>
</tr>
<tr>
<td>readNAEP</td>
<td>99</td>
</tr>
<tr>
<td>readNLS72</td>
<td>101</td>
</tr>
<tr>
<td>readPIAAC</td>
<td>102</td>
</tr>
<tr>
<td>readPIRLS</td>
<td>103</td>
</tr>
<tr>
<td>readPISA</td>
<td>105</td>
</tr>
<tr>
<td>readTALIS</td>
<td>107</td>
</tr>
<tr>
<td>readTIMSS</td>
<td>108</td>
</tr>
<tr>
<td>readTIMSSAdv</td>
<td>110</td>
</tr>
<tr>
<td>read_ePIRLS</td>
<td>112</td>
</tr>
<tr>
<td>rebindAttributes</td>
<td>114</td>
</tr>
<tr>
<td>recode.sdf</td>
<td>115</td>
</tr>
<tr>
<td>rename.sdf</td>
<td>116</td>
</tr>
<tr>
<td>rq.sdf</td>
<td>117</td>
</tr>
<tr>
<td>SD</td>
<td>120</td>
</tr>
<tr>
<td>searchSDF</td>
<td>122</td>
</tr>
<tr>
<td>showCodebook</td>
<td>123</td>
</tr>
<tr>
<td>showCutPoints</td>
<td>124</td>
</tr>
<tr>
<td>showPlausibleValues</td>
<td>125</td>
</tr>
<tr>
<td>showWeights</td>
<td>126</td>
</tr>
</tbody>
</table>
The EdSurvey package uses appropriate methods for analyzing NCES datasets with a small memory footprint. Existing system control files, included with the data, are used to read in and format the data for further processing.

Details

To get started using EdSurvey, see the vignettes for tutorials and the statistical methodologies. Use `vignette("introduction",package="EdSurvey")` to see the vignettes.

The package provides functions called `readNAEP, readCivEDICCS, readICILS, readPIAAC, readPIRLS, read_ePIRLS, readPISA, readTALIS, readTIMSS, readTIMSSAdv, and readECLS_K2011` to read in NCES datasets. The functions `achievementLevels, cor.sdf, edsurveyTable, summary2, lm.sdf, logit.sdf, mixed.sdf, rq.sdf, percentile, and gap` can then be used to analyze data. For advanced users, `getData` extracts the data of interest as a data frame for further processing.

EdSurvey-package

Analysis of NCES Education Survey and Assessment Data

Description

Returns achievement levels using weights and variance estimates appropriate for the `edsurvey.data.frame`.

Usage

```r
achievementLevels(
  achievementVars = NULL,
  aggregateBy = NULL,
  data,
  cutpoints = NULL,
  returnDiscrete = TRUE,
  returnCumulative = FALSE,
  weightVar = NULL,
  jrrIMax = 1,
  omittedLevels = TRUE,
)```

---

**Description**

Returns achievement levels using weights and variance estimates appropriate for the `edsurvey.data.frame`.

**Usage**

```r
achievementLevels(
 achievementVars = NULL,
 aggregateBy = NULL,
 data,
 cutpoints = NULL,
 returnDiscrete = TRUE,
 returnCumulative = FALSE,
 weightVar = NULL,
 jrrIMax = 1,
 omittedLevels = TRUE,
)```
achievementLevels

defaultConditions = TRUE,
recode = NULL,
returnNumberOfPSU = FALSE,
returnVarEstInputs = FALSE
)

Arguments

achievementVars
character vector indicating variables to be included in the achievement levels table, potentially with a subject scale or subscale. When the subject scale or subscale is omitted, the default subject scale or subscale is used. You can find the default composite scale and all subscales using the function `showPlausibleValues`.

aggregateBy
character vector specifying variables by which to aggregate achievement levels. The percentage column sums up to 100 for all levels of all variables specified here. When set to the default of NULL, the percentage column sums up to 100 for all levels of all variables specified in `achievementVars`.

data
an `edsurvey.data.frame`

cutpoints
numeric vector indicating cutpoints. Set to standard NAEP cutpoints for Basic, Proficient, and Advanced by default.

returnDiscrete
logical indicating if discrete achievement levels should be returned. Defaults to TRUE.

returnCumulative
logical indicating if cumulative achievement levels should be returned. Defaults to FALSE. The first and last categories are the same as defined for discrete levels.

weightVar
character string indicating the weight variable to use. Only the name of the weight variable needs to be included here, and any replicate weights will be automatically included. When this argument is NULL, the function uses the default. Use `showWeights` to find the default.

jrrIMax
a numeric value. When using the jackknife variance estimation method, the default estimation option, `jrrIMax=1`, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr} term (see Statistical Methods Used in EdSurvey for the definition of V_{jrr}) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

omittedLevels
a logical value. When set to the default value (TRUE), it drops those levels in all factor variables that are specified in `achievementVars` and `aggregateBy`. Use `print` on an `edsurvey.data.frame` to see the omitted levels.

defaultConditions
a logical value. When set to the default value of TRUE, uses the default conditions stored in an `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.

recode
a list of lists to recode variables. Defaults to NULL. Can be set as `recode = list(var1=list(from=c("a", "b", "c"), to="d"))`. See Examples.
achievementLevels

returnNumberOfPSU

- a logical value set to TRUE to return the number of primary sampling units (PSUs)

returnVarEstInputs

- a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

Details

The achievementLevels function applies appropriate weights and the variance estimation method for each edsurvey.data.frame, with several arguments for customizing the aggregation and output of the analysis results. Namely, by using these optional arguments, users can choose to generate the percentage of students performing at each achievement level (discrete), generate the percentage of students performing at or above each achievement level (cumulative), calculate the percentage distribution of students by achievement level (discrete or cumulative) and selected characteristics (specified in aggregateBy), and compute the percentage distribution of students by selected characteristics within a specific achievement level.

Calculation of percentages:
The details of the methods are shown in the vignette titled Statistical Methods Used in EdSurvey in “Estimation of Weighted Percentages When Plausible Values Are Present” and are used to calculate all cumulative and discrete probabilities.

When the requested achievement levels are discrete (returnDiscrete = TRUE), the percentage \(A \) is the percentage of students (within the categories specified in aggregateBy) whose scores lie in the range \([cutPoints_i, cutPoints_{i+1})\), \(i = 0, 1, ..., n\). cutPoints is the score thresholds provided by the user with cutPoints0 taken to be 0. cutPoints are set to NAEP standard cutpoints for achievement levels by default. To aggregate by a specific variable, for example, dsex, specify dsex in aggregateBy and all other variables in achievementVars. To aggregate by subscale, specify the name of the subscale (e.g., num_oper) in aggregateBy and all other variables in achievementVars.

When the requested achievement levels are cumulative (returnCumulative = TRUE), the percentage \(A \) is the percentage of students (within the categories specified in aggregateBy) whose scores lie in the range \([cutPoints_i, \infty)\), \(i = 1, 2, ..., n - 1\). The first and last categories are the same as defined for discrete levels.

Calculation of standard error of percentages:
The method used to calculate the standard error of the percentages is described in the vignette titled Statistical Methods Used in EdSurvey in the sections “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Present, Using the Jackknife Method” and “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Taylor Series Method.” For “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Present, Using the Jackknife Method,” the value of jrrIMax sets the value of \(m^* \).

Value

A list containing up to two data frames, one discrete achievement levels (when returnDiscrete is TRUE) and one for cumulative achievement levels (when returnCumulative is TRUE). The data.frame contains the following columns:

- Level: one row for each level of the specified achievement cutpoints
achievementLevels

Variables in achievementVars
one column for each variable in achievementVars and one row for each level
of each variable in achievementVars

Percent the percentage of students at or above each achievement level aggregated as
specified by aggregateBy

StandardError the standard error of the percentage, accounting for the survey sampling methodology. See the vignette titled Statistical Methods Used in EdSurvey.

N the number of observations in the incoming data (the number of rows when
omittedLevels and defaultConditions are set to FALSE)

wtdN the weighted number of observations in the data

nPSU the number of PSUs at or above each achievement level aggregated as specified
by aggregateBy. Only returned with returnNumberOfPSU=TRUE.

Author(s)
Huade Huo, Ahmad Emad, and Trang Nguyen

References

Examples
Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

discrete achievement levels
achievementLevels(achievementVars=c("composite"), aggregateBy=NULL, data=sdf)

discrete achievement levels with a different subscale
achievementLevels(achievementVars=c("num_oper"), aggregateBy=NULL, data=sdf)

cumulative achievement levels
achievementLevels(achievementVars=c("composite"), aggregateBy=NULL, data=sdf,
 returnCumulative=TRUE)

cumulative achievement levels with a different subscale
achievementLevels(achievementVars=c("num_oper"), aggregateBy=NULL, data=sdf,
 returnCumulative=TRUE)

achievement levels as independent variables, by sex aggregated by composite
achievementLevels(achievementVars=c("composite", "dsex"), aggregateBy="composite",
data=sdf, returnCumulative=TRUE)

achievement levels as independent variables, by sex aggregated by sex
achievementLevels(achievementVars=c("composite", "dsex"), aggregateBy="dsex",
data=sdf, returnCumulative=TRUE)

achievement levels as independent variables, by race aggregated by race
as.data.frame

Coerce to a Data Frame

Description

Function to coerce a light.edsurvey.data.frame to a data.frame.

Usage

S3 method for class 'light.edsurvey.data.frame'
as.data.frame(x, ...)

Arguments

x a light.edsurvey.data.frame

... other arguments to be passed to as.data.frame

Value

a data.frame

Author(s)

Trang Nguyen
Description

Implements `cbind` and `rbind` for `light.edsurvey.data.frame` class. It takes a sequence of `vector`, `matrix`, `data.frame`, or `light.edsurvey.data.frame` arguments and combines by columns or rows, respectively.

Usage

```r
cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)
```

Arguments

- `...`: one or more objects of class `vector`, `data.frame`, `matrix`, or `light.edsurvey.data.frame`
- `deparse.level`: integer determining under which circumstances column and row names are built from the actual arguments. See `cbind`.

Details

Because `cbind` and `rbind` are standard generic functions that do not use method dispatch, we set this function as generic, which means it overwrites `base::cbind` and `base::rbind` on loading. If none of the specified elements are of class `light.edsurvey.data.frame`, the function will revert to the standard base method. However, to be safe, you might want to explicitly use `base::cbind` when needed after loading the package.

The returned object will contain attributes only from the first `light.edsurvey.data.frame` object in the call to `cbind.light.edsurvey.data.frame`.

Value

A matrix-like object like `matrix` or `data.frame`. Returns a `light.edsurvey.data.frame` if there is at least one `light.edsurvey.data.frame` in the list of arguments.

Author(s)

Trang Nguyen, Michael Lee, and Paul Bailey

See Also

`cbind`
Description

Diagnostic plots for regressions can become too dense to interpret. This function helps by adding a contour plot over the points to allow the density of points to be seen, even when an area is entirely covered in points.

Usage

contourPlot(x, y, m = 30L, xrange, yrange, xkernel, ykernel, nlevels = 9L, ...)

Arguments

- **x**: numeric vector of the x data to be plotted
- **y**: numeric vector of the y data to be plotted
- **m**: integer value of the number of x and y grid points
- **xrange**: numeric vector of length two indicating x-range of plot; defaults to range(x)
- **yrange**: numeric vector of length two indicating y-range of plot; defaults to range(y)
- **xkernel**: numeric indicating the standard deviation of Normal x kernel to use in generating contour plot
- **ykernel**: numeric indicating the standard deviation of Normal y kernel to use in generating contour plot
- **nlevels**: integer with the number of levels of the contour plot
- **...**: additional arguments to be passed to a plot call that generates the scatter plot and the contour plot

Author(s)

Yuqi Liao and Paul Bailey

Examples

```r
## Not run:
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
lm1 <- lm.sdf(composite ~ pared * dsex + sdracem, sdf)
# plot the results
contourPlot(x=lm1$fitted.values,
    y=lm1$Residuals[,1], # use only the first plausible value
    m=30,
    xlab="fitted values",
    ylab="residuals",
    main="Figure 1")
# add a line indicating where the residual is zero
abline(0,0)
## End(Not run)
```
cor.sdf

Bivariate Correlation

Description

Computes the correlation of two variables on an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list. The correlation accounts for plausible values and the survey design.

Usage

```r
cor.sdf(
  x,
  y,
  data,
  method = c("Pearson", "Spearman", "Polychoric", "Polyserial"),
  weightVar = "default",
  reorder = NULL,
  omittedLevels = TRUE,
  defaultConditions = TRUE,
  recode = NULL,
  condenseLevels = TRUE
)
```

Arguments

- `x`: a character variable name from the data to be correlated with `y`
- `y`: a character variable name from the data to be correlated with `x`
- `data`: an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.
- `method`: a character string indicating which correlation coefficient (or covariance) is to be computed. One of Pearson (default), Spearman, Polychoric, or Polyserial.
- `weightVar`: character indicating the weight variable to use. See Details section in `lm.sdf`.
- `reorder`: a list of variables to reorder. Defaults to NULL (no variables are reordered). Can be set as `reorder = list(var1 = c("a", "b", "c"), var2 = c("4", "3", "2", "1"))`. See Examples.
- `omittedLevels`: a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels.
- `defaultConditions`: a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
- `recode`: a list of lists to recode variables. Defaults to NULL. Can be set as `recode = list(var1 = list(from = c("a", "b", "c"), to = "d"))`. See Examples.
condenseLevels a logical value. When set to the default value of TRUE and either x or y is a categorical variable, the function will drop all unused levels and rank the levels of the variable before calculating the correlation. When set to FALSE, the numeric levels of the variable remain the same as in the codebook. See Examples.

Details

The getData arguments and recode.sdf may be useful. (See Examples.) The correlation methods are calculated as described in the documentation for the wCorr package—see browseVignettes(package="wCorr").

Value

An edsurvey.cor that has print and summary methods.

The class includes the following elements:

- correlation numeric estimated correlation coefficient
- Zse standard error of the correlation (Vimp + Vjrr). In the case of Pearson, this is calculated in the linear atanh space and is not a standard error in the usual sense.
- correlates a vector of length two showing the columns for which the correlation coefficient was calculated
- variables correlates that are discrete
- order a list that shows the order of each variable
- method the type of correlation estimated
- Vjrr the jackknife component of the variance estimate. For Pearson, in the atanh space.
- Vimp the imputation component of the variance estimate. For Pearson, in the atanh space.
- weight the weight variable used
- npv the number of plausible values used
- njk the number of the jackknife replicates used

Author(s)

Paul Bailey; relies heavily on the wCorr package, written by Ahmad Emad and Paul Bailey

See Also
cor and weightedCorr

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# for two categorical variables any of the following work
c1_pears <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Pearson",
```

weightVar="origwt")
c1_spear <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Spearman",
weightVar="origwt")
c1_polyc <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Polychoric",
weightVar="origwt")
c1_pears
c1_spear
c1_polyc

for categorical variables, users can either keep the original numeric levels of the variables
or condense the levels (default)
the following call condenses the levels of the variable 'c046501'
cor.sdf(x="c046501", y="c044006", data=sdf)

the following call keeps the original levels of the variable 'c046501'
cor.sdf(x="c046501", y="c044006", data=sdf, condenseLevels = FALSE)

these take awhile to calculate for large datasets, so limit to a subset
sdf_dnf <- subset(sdf, b003601 == 1)

for a categorical variable and a scale score any of the following work
c2_pears <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Pearson",
weightVar="origwt")
c2_spear <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Spearman",
weightVar="origwt")
c2_polys <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Polyserial",
weightVar="origwt")
c2_pears
c2_spear
c2_polys

recode two variables
cor.sdf(x="c046501", y="c044006", data=sdf, method="Spearman", weightVar="origwt",
recode=list(c046501=list(from="0%", to="None"),
c046501=list(from=c("1-5%", "6-10%", "11-25%", "26-50%",
"51-75%", "76-90%", "Over 90%"),
to="Between 0% and 100%"),
c044006=list(from=c("1-5%", "6-10%", "11-25%", "26-50%",
"51-75%", "76-90%", "Over 90%"),
to="Between 0% and 100%")))

reorder two variables
cor.sdf(x="b017451", y="sdracem", data=sdf, method="Spearman", weightVar="origwt",
reorder=list(sdracem=c("White", "Hispanic", "Black", "Asian/Pacific Island",
"Amer Ind/Alaska Natv", "Other"),
b017451=c("Every day", "2 or 3 times a week", "About once a week",
"Once every few weeks", "Never or hardly ever")))

recode two variables and reorder
cor.sdf(x="pared", y="b013801", data=subset(sdf, !pared %in% "I Don\'t Know"),
method="Spearman", weightVar = "origwt", weightVar="origwt")
recode=list(pared=list(from="Some ed after H.S.", to="Graduated H.S."), pared=list(from="Graduated college", to="Graduated H.S."), b013801=list(from="0-10", to="Less than 100"), b013801=list(from="11-25", to="Less than 100"), b013801=list(from="26-100", to="Less than 100"), reorder=list(b013801=c("Less than 100", ">100")))

End(Not run)

dim.edsurvey.data.frame

Dimensions of an edsurvey.data.frame or an edsurvey.data.frame.list

Description

Returns the dimensions of an edsurvey.data.frame or an edsurvey.data.frame.list.

Usage

```r
## S3 method for class 'edsurvey.data.frame'
dim(x)
```

Arguments

- `x`
 an edsurvey.data.frame or an edsurvey.data.frame.list

Value

For an edsurvey.data.frame, returns a numeric vector of length two, with the first element being the number of rows and the second element being the number of columns.

For an edsurvey.data.frame.list, returns a list of length two, where the first element is named `nrow` and is a numeric vector containing the number of rows for each element of the edsurvey.data.frame.list. The second element is named `ncol` and is the number of columns for each element. This is done so that the `nrow` and `ncol` functions return meaningful results, even if nonstandard.

Author(s)

Paul Bailey
Description

Calculates the degrees of freedom for a statistic (or of a contrast between two statistics) based on the jackknife and imputation variance estimates.

Usage

```r
DoFCorrection(
  varEstA,
  varEstB = varEstA,
  varA,
  varB = varA,
  method = c("WS", "JR")
)
```

Arguments

- **varEstA**: the `varEstInput` object returned from certain functions, such as `lm.sdf` when `returnVarEstInputs=TRUE`). The variable `varA` must be on this dataset. See Examples.
- **varEstB**: similar to the `varEstA` argument. If left blank, both are assumed to come from `varEstA`. When set, the degrees of freedom are for a contrast between `varA` and `varB`, and the `varB` values are taken from `varEstB`.
- **varA**: a character that names the statistic in the `varEstA` argument for which the degrees of freedom calculation is required.
- **varB**: a character that names the statistic in the `varEstB` argument for which a covariance is required. When `varB` is specified, returns the degrees of freedom for the contrast between `varA` and `varB`.
- **method**: a character that is either `WS` for the Welch-Satterthwaite formula or `JR` for the Johnson-Rust correction to the Welch-Satterthwaite formula.

Details

This calculation happens under the notion that statistics have little variance within strata, and some strata will contribute fewer than a full degree of freedom.

The functions are not vectorized, so both `varA` and `varB` must contain exactly one variable name.

The method used to compute the degrees of freedom is in the vignette titled *Statistical Methods Used in EdSurvey* section “Estimation of Degrees of Freedom.”

Value

numeric; the estimated degrees of freedom
Author(s)

Paul Bailey

References

Examples

```r
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))
lm1 <- lm.sdf(composite ~ dsex + b017451, sdf, returnVarEstInputs=TRUE)
summary(lm1)
# this output agrees with summary of lm1 coefficient for dsex
DoFCorrection(lm1$varEstInputs,
    varA="dsexFemale",
    method="JR")
# second example, a covariance term requires more work
# first, estimate the covariance between two regression coefficients
# note that the variable names are parallel to what they are called in lm1 output
covFEveryDay <- varEstToCov(lm1$varEstInputs,
    varA="dsexFemale",
    varB="b017451Every day",
    jkSumMultiplier=EdSurvey:::getAttributes(sdf, "jkSumMultiplier"))
# second, find the difference and the SE of the difference
se <- lm1$coefmat["dsexFemale","se"] + lm1$coefmat["b017451Every day","se"] +
    -2*covFEveryDay
# third, calculate the t-statistic
tv <- (coef(lm1)["dsexFemale"] - coef(lm1)["b017451Every day"]/se
# fourth, calculate the p-value, which requires the estimated degrees of freedom
dofFEveryDay <- DoFCorrection(lm1$varEstInputs,
    varA="dsexFemale",
    varB="b017451Every day",
    method="JR")
# finally, the p-value
2*(1-pt(abs(tv), df=dofFEveryDay))
```

Description

Provides instructions to download CivED or ICCS data to be processed in readCivEDICCS.

Usage

downloadCivEDICCS(years = c(1999, 2009))
downloadECLS_K

Arguments

years an integer vector indicating the study year. Valid years are 1999 and 2009.

Author(s)

Tom Fink

See Also

readCivEDICCS

Examples

Not run:
view instructions to manually download study data
downloadCivEDICCS()

End(Not run)

downloadECLS_K Download and Unzip ECLS_K Files

Description

Uses an Internet connection to download ECLS_K data. Data come from nces.ed.gov zip files. This function works for 1998 and 2011 data.

Usage

downloadECLS_K(root, years = c(1998, 2011), cache = FALSE, verbose = TRUE)

Arguments

root a character string indicating the directory where the ECLS_K data should be stored. Files are placed in a subdirectory named ECLS_K/[year].

years an integer vector of the assessment years to download. Valid years are 1998 and 2011.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink
downloadELS

Download and Unzip ELS Files

Description

Uses an Internet connection to download ELS data. Data come from nces.ed.gov zip files. This function works for 2002 data.

Usage

downloadELS(root, years = c(2002), cache = FALSE, verbose = TRUE)

Arguments

- `root` a character string indicating the directory where the ELS data should be stored. Files are placed in a subdirectory named ELS/[year].
- `years` an integer vector of the assessment years to download. Valid year is 2002 only.
- `cache` a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
- `verbose` a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

readELS
downloadHSLS

Examples
```r
## Not run:
# root argument will vary by operating system conventions
downloadELS(years=2002, root = "C:/")

# cache=TRUE will download then process the datafiles
downloadELS(years=2002, root = "C:/", cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadELS(root="C:/", verbose = FALSE)

## End(Not run)
```

downloadHSLS

Download and Unzip HSLS Files

Description

Uses an Internet connection to download HSLS data. Data come from nces.ed.gov zip files. This function works for 2009 data.

Usage

```r
downloadHSLS(root, years = c(2009), cache = FALSE, verbose = TRUE)
```

Arguments

- **root**
 - a character string indicating the directory where the HSLS data should be stored. Files are placed in a subdirectory named HSLS/[year].

- **years**
 - an integer vector of the assessment years to download. Valid year is 2009 only.

- **cache**
 - a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

- **verbose**
 - a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

- readHSLS
Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadHSLS(root = "C:/", years=2009)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadHSLS(root="C:/", verbose = FALSE)

## End(Not run)
```

Instructions for Downloading and Unzipping ICILS Files

downloadICILS

Description

Provides instructions to download ICILS data to be processed in `readICILS`.

Usage

```r
downloadICILS(years = c(2013))
```

Arguments

- `years` an integer vector indicating the study year. Valid year is 2013 only.

Author(s)

Tom Fink

See Also

- `readICILS`

Examples

```r
## Not run:
# view instructions to manually download study data
downloadICILS()

## End(Not run)
```
downloadPIAAC

Download and Unzip PIAAC Files

Description

Uses an Internet connection to download PIAAC data to a computer. Data come from the OECD website.

Usage

downloadPIAAC(root, cycle = 1, cache = FALSE, verbose = TRUE)

Arguments

root a character string indicating the directory where the PIAAC data should be stored. Files are placed in a folder named PIAAC/cycle [cycle number].
cycle a numeric value indicating the assessment cycle to download. Valid cycle is 1 only.
cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Paul Bailey and Trang Nguyen

Examples

Not run:
download all available data for PIAAC round 1 to "C:/PIAAC/Round 1" folder
root argument will vary by operating system conventions
downloadPIAAC(root="C:/")

End(Not run)
downloadPIRLS Download and Unzip PIRLS Files

Description

Uses an Internet connection to download PIRLS data. Data come from timssandpirls.bc.edu zip files. This function works for 2001, 2006, 2011, and 2016 data.

Usage

```r
downloadPIRLS(
  root,
  cache = FALSE,
  verbose = TRUE
)
```

Arguments

- `root`
 a character string indicating the directory where the PIRLS data should be stored. Files are placed in a subdirectory named PIRLS/[year].

- `years`

- `cache`
 a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

- `verbose`
 a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

`readPIRLS`

Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadPIRLS(year=c(2006, 2011), root = "C:/")

# cache=TRUE will download then process the datafiles
downloadPIRLS(year=2011, root = "C:/", cache = TRUE)

# set verbose=FALSE for silent output
```
if year not specified, download all years
downloadPISA(root="C:/", verbose = FALSE)

End(Not run)

downloadPISA

Download and Unzip PISA Files

Description

Uses an Internet connection to download PISA data to a computer. Data come from the OECD website.

Usage

```r
downloadPISA(
  root,
  database = c("INT", "CBA", "FIN"),
  cache = FALSE,
  verbose = TRUE
)
```

Arguments

- **root**: a character string indicating the directory where the PISA data should be stored. Files are placed in a folder named PISA/[year].
- **database**: a character vector to indicate which database to download from. For 2012, three databases are available (`INT` = International, `CBA` = Computer-Based Assessment, and `FIN` = Financial Literacy). For other years, only `INT` is available (for example, if PISA 2015 financial literacy is to be downloaded, the database argument should be set to `INT`). Defaults to `INT`.
- **cache**: a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is `FALSE`.
- **verbose**: a logical value to either print or suppress status message output. The default value is `TRUE`.

Details

The function uses `download.file` to download files from provided URLs. Some machines might require a different user agent in HTTP(S) requests. If the downloading gives an error or behaves unexpectedly (e.g., a zip file cannot be unzipped or a data file is significantly smaller than expected), users can toggle `HTTPUserAgent` options to find one that works for their machines. One common alternative option is

```
options(HTTPUserAgent="Mozilla/5.0 (Windows NT 6.1; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0")
```
Author(s)
Yuqi Liao, Paul Bailey, and Trang Nguyen

See Also
readPISA, download.file, options

Examples
Not run:
download PISA 2012 data (for all three databases)
downloadPISA(years = 2012, database = c("INT","CBA","FIN"), root="C:/")

download PISA 2009, 2012, and 2015 data (International Database only)
to C:/PISA/2009, C:/PISA/2012, and C:/PISA/2015 folders, respectively

End(Not run)
Description

Uses an Internet connection to download TIMSS data. Data come from timssandpirls.bc.edu zip files. This function works for 2003, 2007, 2011, and 2015 data.

Usage

```r
downloadTIMSS(
  root,
  cache = FALSE,
  verbose = TRUE
)
```

Arguments

- `root`: a character string indicating the directory where the TIMSS data should be stored. Files are placed in a subdirectory named TIMSS/[year].
- `cache`: a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
- `verbose`: a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

- `readTIMSS`

Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadTIMSS(year=c(2015, 2011), root = "C:/")

# cache=TRUE will download then process the datafiles
downloadTIMSS(year=2015, root = "C:/", cache = TRUE)

# set verbose=FALSE for silent output
```
downloadTIMSSAdv

if year not specified, download all years
downloadTIMSS(root="C:/", verbose = FALSE)

End(Not run)

downloadTIMSSAdv Download and Unzip TIMSS Advanced Files

Description

Uses an Internet connection to download TIMSS Advanced data. Data come from timssandpirls.bc.edu zip files. This function works for 1995, 2008, and 2015 data.

Usage

downloadTIMSSAdv(
 root,
 cache = FALSE,
 verbose = TRUE
)

Arguments

root a character string indicating the directory where the TIMSS Advanced data should be stored. Files are placed in a subdirectory named TIMSSAdv/[year].

years an integer vector of the assessment years to download. Valid years are 1995, 2008, and 2015.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

readTIMSSAdv
Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadTIMSSAdv(year=c(2008, 2015), root = "C:/")

# cache=TRUE will download then process the data files
downloadTIMSSAdv(year=2015, root = "C:/", cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadTIMSSAdv(root="C:/", verbose = FALSE)

## End(Not run)
```

Description

Uses an Internet connection to download ePIRLS data. Data come from timssandpirls.bc.edu zip files. This function works for 2016 data.

Usage

```r
download_ePIRLS(root, years = c(2016), cache = FALSE, verbose = TRUE)
```

Arguments

- **root**
 - a character string indicating the directory where the ePIRLS data should be stored. Files are placed in a subdirectory named ePIRLS/[year].

- **years**
 - an integer vector of the assessment years to download. Valid year is 2016 only.

- **cache**
 - a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

- **verbose**
 - a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

- `read_ePIRLS`
Examples

Not run:
root argument will vary by operating system conventions
download_ePIRLS(years=2016, root = "C:/$")

cache=TRUE will download then process the datafiles
download_ePIRLS(years=2016, root = "C:/$", cache = TRUE)

set verbose=FALSE for silent output
if year not specified, download all years
download_ePIRLS(root="C:/$", verbose = FALSE)

End(Not run)

edsurvey.data.frame EdSurvey Class Constructors and Helpers

Description

Two new classes in EdSurvey are described in this section: the edsurvey.data.frame and light.edsurvey.data.frame. The edsurvey.data.frame class stores metadata about survey data, and data are stored on the disk (via the LaF package), allowing gigabytes of data to be used easily on a machine otherwise inappropriate for manipulating large datasets. The light.edsurvey.data.frame is typically generated by the getData function and stores the data in a data.frame. Both classes use attributes to manage metadata and allow for correct statistics to be used in calculating results; the getAttributes acts as an accessor for these attributes, whereas setAttributes acts as a mutator for the attributes. As a convenience, edsurvey.data.frame implements the $ function to extract a variable.

Usage

edsurvey.data.frame(
 userConditions,
 defaultConditions,
 dataList = list(),
 weights,
 pvvars,
 subject,
 year,
 assessmentCode,
 dataType,
 gradeLevel,
 achievementLevels,
 omittedLevels,
 survey,
 country,
 psuVar,
 stratumVar,
edsurvey.data.frame

jkSumMultiplier,
recodes = NULL,
validateFactorLabels = FALSE,
forceLower = TRUE,
reqDecimalConversion = TRUE
)

S3 method for class 'edsurvey.data.frame'
x$i

S3 replacement method for class 'edsurvey.data.frame'
x$name <- value

getAttributes(data, attribute = NULL)

setAttributes(data, attribute, value)

getPSUVar(data, weightVar = NULL)

getStratumVar(data, weightVar = NULL)

Arguments

userConditions a list of user conditions that includes subsetting or recoding conditions
defaultConditions a list of default conditions that often are set for each survey
dataList a list of dataListItem objects to model the data structure of the survey
weights a list that stores information regarding weight variables. See Details.
pvvars a list that stores information regarding plausible values. See Details.
subject a character that indicates the subject domain of the given data
year a character or numeric that indicates the year of the given data
assessmentCode a character that indicates the code of the assessment. Can be National or International.
dataType a character that indicates the unit level of the main data. Examples include Student, teacher, school, Adult Data.
gradeLevel a character that indicates the grade level of the given data
achievementLevels a list of achievement-level categories and cutpoints
omittedLevels a list of default omitted levels for the given data
survey a character that indicates the name of the survey
country a character that indicates the country of the given data
psuVar a character that indicates the PSU sampling unit variable. Ignored when weights have psuVar defined.
stratumVar a character that indicates the stratum variable. Ignored when weights have stratumVar defined.
jkSumMultiplier
 a numeric value of the jackknife coefficient (used in calculating the jackknife
 replication estimation)
recodes
 a list of variable recodes of the given data
validateFactorLabels
 a Boolean that indicates whether the getData function needs to validate factor
 variables
forceLower
 a Boolean; when set to TRUE, will automatically lowercase variable names
reqDecimalConversion
 a Boolean; when set to TRUE, a getData call will multiply the raw file value by
 a decimal multiplier
x
 an edsurvey.data.frame
i
 a character, the column name to extract
name
 a character vector of the column to edit
value
 outside of the assignment context, new value of the given attribute
data
 an edsurvey.data.frame
attribute
 a character, name of an attribute to get or set
weightVar
 a character indicating the full sample weights

Details

The weight list has an element named after each weight variable name that is a list with ele-
ments jkbase and jksuffixes. The jkbase variable is a single character indicating the jackknife
replicate weight base name, whereas jksuffixes is a vector with one element for each jackknife
replicate weight. When the two are pasted together, they should form the complete set of the jack-
knife replicate weights. The weights argument also can have an attribute that is the default weight.
If the primary sampling unit and stratum variables change by weight, they also can be defined on
the weight list as psuVar and stratumVar. When this option is used, it overrides the psuVar and
stratumVar on the edsurvey.data.frame, which can be left blank. A weight must define only
one of psuVar and stratumVar.

The pvvars list has an element for each subject or subscale score that has plausible values. Each
element is a list with a varnames element that indicates the column names of the plausible values
and an achievementLevel argument that is a named vector of the achievement-level cutpoints.

Value

An object of class edsurvey.data.frame with the following elements:

* Elements that store data connections and data codebooks
 * dataList
 a list object containing the surveys dataListItem objects

* Elements that store sample design and default subsetting information of the given survey data
 * userConditions
 a list containing all user conditions, set using the subset.edsurvey.data.frame method
 * defaultConditions
 the default subsample conditions
weights a list containing the weights. See Details.
stratumVar a character that indicates the default strata identification variable name in the data. Often used in Taylor series estimation.
psuVar a character that indicates the default PSU (sampling unit) identification variable name in the data. Often used in Taylor series estimation.
pvvars a list containing the plausible values. See Details.
achievementLevels default achievement cutoff scores and names. See Details.
omittedLevels the levels of the factor variables that will be omitted from the edsurvey.data.frame

Elements that store descriptive information of the survey

survey the type of survey data
subject the subject of the data
year the year of assessment
assessmentCode the assessment code
dataType the type of data (e.g., student or school)
gradeLevel the grade of the dataset contained in the edsurvey.data.frame

EdSurvey Classes

edsurvey.data.frame is an object that stores connection to data on the disk along with important survey sample design information.

edsurvey.data.frame.list is a list of edsurvey.data.frame objects. It often is used in trend or cross-regional analysis in the gap function. See edsurvey.data.frame.list for more information on how to create an edsurvey.data.frame.list. Users also can refer to the vignette titled Using EdSurvey for Trend Analysis for examples.

Besides edsurvey.data.frame class, the EdSurvey package also implements the light.edsurvey.data.frame class, which can be used by both EdSurvey and non-EdSurvey functions. More particularly, light.edsurvey.data.frame is a data.frame that has basic survey and sample design information (i.e., plausible values and weights), which will be used for variance estimation in analytical functions. Because it also is a base R data.frame, users can apply base R functions for data manipulation. See the vignette titled Using the getData Function in EdSurvey for more examples.

Many functions will remove attributes from a data frame, such as a light.edsurvey.data.frame, and the rebindAttributes function can add them back.

Users can get a light.edsurvey.data.frame object by using the getData method with addAttributes=TRUE.

Basic Methods for EdSurvey Classes

Extracting a column from an edsurvey.data.frame

Users can extract a column from an edsurvey.data.frame object using $ or [] like a normal data frame.

Extracting and updating attributes of an object of class edsurvey.data.frame or light.edsurvey.data.frame
Users can use the `getAttributes` method to extract any attribute of an `edsurvey.data.frame` or a `light.edsurvey.data.frame`. A `light.edsurvey.data.frame` will not have attributes related to data connection because data have already been read in memory.

If users want to update an attribute (i.e., `omittedLevels`), they can use the `setAttributes` method.

Author(s)
Tom Fink, Trang Nguyen, and Paul Bailey

See Also
rebindAttributes

Examples

```r
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# run a base R function on a column of edsurvey.data.frame
table(sdf$dsex)
# assignment
table(sdf$b013801)
sdf$books <- ifelse(sdf$b013801 %in% c("0-10", "11-25"), "0-25 books", "26+ books")
table(sdf$books, sdf$b013801)

# extract default omitted levels of NAEP primer data
getAttributes(sdf, "omittedLevels") #[1] "Multiple" NA "Omitted"

# update default omitted levels of NAEP primer data
sdf <- setAttributes(sdf, "omittedLevels", c("Multiple", "Omitted", NA, "(Missing)"))
getAttributes(sdf, "omittedLevels") #[1] "Multiple" "Omitted" NA "(Missing)"
```

edsurvey.data.frame.list

EdSurvey Dataset Vectorization

Description

The `edsurvey.data.frame.list` function creates an `edsurvey.data.frame.list` object from a series of `edsurvey.data.frame` objects. `append.edsurvey.data.frame.list` creates an `edsurvey.data.frame.list` from two `edsurvey.data.frame` or `edsurvey.data.frame.list` objects.

An `edsurvey.data.frame.list` is useful for looking at data, for example, across time or graphically, and reduces repetition in function calls. The user may specify a variable that varies across the `edsurvey.data.frame` objects that is then included in further output.

Usage

```r
edsurvey.data.frame.list(datalist, cov = NULL, labels = NULL)

append.edsurvey.data.frame.list(sdfA, sdfB, labelsA = NULL, labelsB = NULL)
```
Arguments

datalist a list of edsurvey.data.frame objects to be combined

cov a character vector that indicates what varies across the edsurvey.data.frame objects. Guessed if not supplied. For example, if several edsurvey.data.frame objects for several different countries are supplied, then cov would be set to the country.

labels a character vector that specifies labels. Must be the same length as datalist. Not needed if cov exists or can be guessed. See Examples.

sdfA an edsurvey.data.frame or an edsurvey.data.frame.list to be combined

dsdfB an edsurvey.data.frame or an edsurvey.data.frame.list to be combined

labelsA a character vector that specifies labels for sdfA when creating the new edsurvey.data.frame.list. labelsA would be ignored if sdfA is an edsurvey.data.frame.list with labels supplied.

labelsB a character vector that specifies labels for sdfB when creating the new edsurvey.data.frame.list. labelsB would be ignored if sdfB is an edsurvey.data.frame.list with labels supplied.

Details

The edsurvey.data.frame.list can be used in place of an edsurvey.data.frame in function calls, and results are returned for each of the component edsurvey.data.frames, with the organization of the results varying by the particular method.

An edsurvey.data.frame.list can be created from several edsurvey.data.frame objects that are related; for example, all are NAEP mathematics assessments but have one or more differences (e.g., they are all from different years). Another example could be data from multiple countries for an international assessment.

When cov and labels are both missing, edsurvey.data.frame.list attempts to guess what variables may be varying and uses those. When there are no varying covariates, generic labels are automatically generated.

Value

edsurvey.data.frame.list returns an edsurvey.data.frame.list with elements

data a list of edsurvey.data.frame objects

covs a character vector of key variables that vary within the edsurvey.data.frame.list. When labels are included, they will be included in covs. In the unusual circumstance that sdfA or sdfB is an edsurvey.data.frame.list has covs, and labels are not supplied, the covs are simply pasted together with colons between them.

append.edsurvey.data.frame.list returns an edsurvey.data.frame.list with elements

data a list of edsurvey.data.frame objects

covs a character vector of key variables that vary within the edsurvey.data.frame.list. When labels are included, they will be included in covs.
Author(s)

Paul Bailey, Huade Huo

Examples

read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

NOTE: the following code would not normally have to be run but is used here
to generate demo data.
Specifically, make subsets of sdf by the scrpsu variable,
"Scrambled PSU and school code"
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

construct an edsurvey.data.frame.list from these four data sets
sdfl <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD),
 labels=c("A locations",
 "B locations",
 "C locations",
 "D locations"))

this shows how these datasets will be described
sdfl$covs

get the gaps between Male and Female for each data set
gap1 <- gap("composite", sdfl, dsex="Male", dsex="Female")
gap1

make combine sdfA and sdfB
sdfl1a <- edsurvey.data.frame.list(list(sdfA, sdfB),
 labels=c("A locations",
 "B locations"))

combine sdfC and sdfD
sdfl1b <- edsurvey.data.frame.list(list(sdfC, sdfD),
 labels=c("C locations",
 "D locations"))

append to make sdf3 the same as sdf1
sdfl3 <- append.edsurvey.data.frame.list(sdfl1a, sdfl1b)
identical(sdfl, sdfl3) #TRUE

append to make sdf4 the same as sdf1
sdfl4 <- append.edsurvey.data.frame.list(
 append.edsurvey.data.frame.list(sdfl1a, sdfC, labelsB = "C locations"),
 sdfD,
 sdfl3)
edsurveyTable

labelsB = "D locations"
identical(sdfl, sdfl4) #TRUE

EdSurvey Tables With Conditional Means

Description

Returns a summary table (as a data.frame) that shows the number of students, the percentage of students, and the mean value of the outcome (or left-hand side) variable by the predictor (or right-hand side) variable(s).

Usage

edsurveyTable(
 formula,
 data,
 weightVar = NULL,
 jrrIMax = 1,
 pctAggregationLevel = NULL,
 returnMeans = TRUE,
 returnSepct = TRUE,
 varMethod = c("jackknife", "Taylor"),
 drop = FALSE,
 omittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 returnVarEstInputs = FALSE
)

Arguments

formula object of class formula, potentially with a subject scale or subscale on the left-hand side and variables to tabulate on the right-hand side. When the left-hand side of the formula is omitted and returnMeans is TRUE, then the default subject scale or subscale is used. You can find the default composite scale and all subscales using the function showPlausibleValues. Note that the order of the right-hand side variables affects the output.

data object of class edsurvey.data.frame. See readNAEP for how to generate an edsurvey.data.frame.

weightVar character string indicating the weight variable to use. Note that only the name of the weight variable needs to be included here, and any replicate weights will be automatically included. When this argument is NULL, the function uses the default. Use showWeights to find the default.
jrrIMax

a numeric value; when using the jackknife variance estimation method, the default estimation option, \(jrrIMax=1 \), uses the sampling variance from the first plausible value as the component for sampling variance estimation. The \(V_{jrr} \) term (see the Details section of `lm.sdf` to see the definition of \(V_{jrr} \)) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all of the plausible values being used. Higher values of \(jrrIMax \) lead to longer computing times and more accurate variance estimates.

pctAggregationLevel

the percentage variable sums up to 100 for the first pctAggregationLevel columns. So, when set to 0, the PCT column adds up to 1 across the entire sample. When set to 1, the PCT column adds up to 1 within each level of the first variable on the right-hand side of the formula; when set to 2, then the percentage adds up to 100 within the interaction of the first and second variable, and so on. Default is NULL, which will result in the lowest feasible aggregation level. See Examples section.

returnMeans

a logical value; set to TRUE (the default) to get the MEAN and SE(MEAN) columns in the returned table described in the Value section.

returnSepct

set to TRUE (the default) to get the SEPCT column in the returned table described in the Value section.

varMethod

a character set to jackknife or Taylor that indicates the variance estimation method to be used.

drop

a logical value. When set to the default value of FALSE, when a single column is returned, it is still represented as a data.frame and is not converted to a vector.

omittedLevels

a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use `print` on an edsurvey.data.frame to see the omitted levels.

defaultConditions

a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use `print` on an edsurvey.data.frame to see the default conditions.

recode

a list of lists to recode variables. Defaults to NULL. Can be set as `recode = list(var1 = list(from = c("a", "b", "c"), to = "c"))`.

returnVarEstInputs

a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

Details

This method can be used to generate a simple one-way, two-way, or \(n \)-way table with unweighted and weighted \(n \) values and percentages. It also can calculate the average of the subject scale or subscale for students at each level of the cross-tabulation table.

A detailed description of all statistics is given in the vignette titled *Statistical Methods Used in EdSurvey*.

edsurveyTable
Value

A table with the following columns:

- **RHS levels**
 - one column for each right-hand side variable. Each row regards students who are at the levels shown in that row.
- **N**
 - count of the number of students in the survey in the RHS levels
- **WTD_N**
 - the weighted N count of students in the survey in RHS levels
- **PCT**
 - the percentage of students at the aggregation level specified by `pctAggregationLevel` (see Arguments). See the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Weighted Percentages” and its first subsection “Estimation of Weighted Percentages When Plausible Values Are Not Present.”
- **SE(PCT)**
 - the standard error of the percentage, accounting for the survey sampling methodology. When `varMethod` is the jackknife, the calculation of this column is described in the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Jackknife Method.” When `varMethod` is set to Taylor, the calculation of this column is described in “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Taylor Series Method.”
- **MEAN**
 - the mean assessment score for units in the RHS levels, calculated according to the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Weighted Means When Plausible Values Are Present.”
- **SE(MEAN)**
 - the standard error of the MEAN column (the mean assessment score for units in the RHS levels), calculated according to the vignette titled *Statistical Methods Used in EdSurvey* in the sections “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method” or “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method,” depending on the value of varMethod.

When `returnVarEstInputs` is TRUE, two additional elements are returned. These are `meanVarEstInputs` and `pctVarEstInputs` and regard the MEAN and PCT columns, respectively. These two objects can be used for calculating covariances with `varEstToCov`.

Author(s)

Paul Bailey and Ahmad Emad

References

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# create a table that shows only the breakdown of dsex
edsurveyTable(composite ~ dsex, data=sdf, returnMeans=FALSE, returnSepct=FALSE)

# create a table with composite scores by dsex
edsurveyTable(composite ~ dsex, data=sdf)

# add a second variable
edsurveyTable(composite ~ dsex + b017451, data=sdf)

# add a second variable, do not omit any levels
edsurveyTable(composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE)

# add a second variable, do not omit any levels, change aggregation level
edsurveyTable(composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=0)
edsurveyTable(composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=1)
edsurveyTable(composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=2)

# variance estimation using the Taylor series
edsurveyTable(composite ~ dsex + b017451 + b003501, data=sdf, varMethod="Taylor")

## End(Not run)

edsurveyTable2pdf

PDF File From an edsurveyTable

Description

Produces the LaTeX code and compiles to a PDF file from the edsurveyTable results.

Usage

edsurveyTable2pdf(
  data,
  formula,
  caption = NULL,
  filename = "",
  toCSV = "",
  returnMeans = TRUE,
  estDigits = 2,
  seDigits = 3
)

---
Arguments

data the result of a call to edsurveyTable

formula a formula of the form LHS ~ RHS to cast the edsurveyTable results from long format to wide format. This formula takes the form LHS ~ RHS (e.g., var1 + var2 ~ var3). The order of the entries in the formula is essential.

caption character vector of length one or two containing the table’s caption or title. If the length is two, the second item is the “short caption” used when LaTeX generates a List of Tables. Set to NULL to suppress the caption. Default value is NULL.

filename a character string containing filenames and paths. By default (filename = ""), table will be saved in the working directory (getwd()). Use filename = "CONSOLE" to print LaTeX code in R console without generating a PDF file.

toCSV a character string containing filenames and paths of .csv table output. "" indicates no .csv output. toCSV is independent to filename, so both a csv file and PDF file would be generated if both filename and toCSV were specified.

returnMeans a logical value set to TRUE (the default) to generate a PDF with the MEAN and SE(MEAN). It is set to FALSE to generate a PDF with the PCT and SE(PCT). See Value in edsurveyTable.

estDigits an integer indicating the number of decimal places to be used for estimates. Negative values are allowed. See Details.

seDigits an integer indicating the number of decimal places to be used for standard errors. Negative values are allowed.

Details

Rounding to a negative number of digits means rounding to a power of 10, so, for example, estDigits = -2 rounds estimates to the nearest hundred.

Note

For more details, see the vignette titled Producing LaTeX Tables From edsurveyTable Results With edsurveyTable2pdf.

Author(s)

Huade Huo

Examples

```r
Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

create a table with composite scores by dsex and b017451
est1 <- edsurveyTable(composite ~ dsex + b017451, sdf)

create a table with csv output
edsurveyTable2pdf(data = est1,
```

gap

Gap Analysis

Description

Compares the average levels of a variable between two groups that potentially share members.

Usage

```r
gap(
 variable,
 data,
 groupA = "default",
 groupB = "default",
 percentiles = NULL,
 achievementLevel = NULL,
 achievementDiscrete = FALSE,
 stDev = FALSE,
 targetLevel = NULL,
 weightVar = NULL,
 jrrIMax = 1,
 varMethod = c("jackknife"),
 omittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 referenceDataIndex = 1,
 returnVarEstInputs = FALSE,
 returnSimpleDoF = FALSE,
```
Arguments

variable
a character indicating the variable to be compared, potentially with a subject scale or subscale.

data
an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

groupA
an expression or character expression that defines a condition for the subset. This subset will be compared to groupB. If not specified, it will define a whole sample as in data.

groupB
an expression or character expression that defines a condition for the subset. This subset will be compared to groupA. If not specified, it will define a whole sample as in data. If set to NULL, estimates for the second group will be dropped.

percentiles
a numeric vector. The gap function calculates the mean when this argument is omitted or set to NULL. Otherwise, the gap at the percentile given is calculated.

achievementLevel
the achievement level(s) at which percentages should be calculated.

achievementDiscrete
a logical indicating if the achievement level specified in the achievementLevel argument should be interpreted as discrete so that just the percentage in that particular achievement level will be included. Defaults to FALSE so that the percentage at or above that achievement level will be included in the percentage.

stDev
a logical, set to TRUE to calculate the gap in standard deviations.

targetLevel
a character string. When specified, calculates the gap in the percentage of students at targetLevel in the variable argument. This is useful for comparing the gap in the percentage of students at a survey response level.

weightVar
a character indicating the weight variable to use. See Details.

jrrIMax
a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax = 1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The Vjrr term, or sampling variance term, can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

varMethod
deprecated parameter, gap always uses the jackknife variance estimation

omittedLevels
a logical value. When set to the default value of TRUE, drops those levels of all factor variables. Use print on an edsurvey.data.frame to see the omitted levels.

defaultConditions
a logical value. When set to the default value of TRUE, uses the default conditions stored in edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
gap

recode a list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a", "b", "c"), to = "d")).

referenceDataIndex a numeric used only when the data argument is an edsurvey.data.frame.list, indicating which dataset is the reference dataset that other datasets are compared with. Defaults to 1.

returnVarEstInputs a logical value; set to TRUE to return the inputs to the jackknife and imputation variance estimates which allows for the computation of covariances between estimates.

returnSimpleDoF a logical value set to TRUE to return the degrees of freedom for some statistics (see Value section) that do not have a t-test; useful primarily for further computation.

returnSimpleN a logical value set to TRUE to add the count (n-size) of observations included in groups A and B in the percentage object.

returnNumberOfPSU a logical value set to TRUE to return the number of PSUs used in the calculation.

noCov a logical value set to TRUE to set the covariances to zero in result.

pctMethod a character that is one of unbiased or simple. See the help for percentile for more information.

includeLinkingError a logical value set to TRUE to include the linking error in variance estimation. Standard errors (e.g., diffAAse, diffBBse, and diffABABse) and p-values (e.g., diffAApValue, diffBBpValue, and diffABABpValue) would be adjusted for comparisons between digitally based assessments (DBA) and paper-based assessments (PBA) data. This option is supported only for NAEP data.

Details

This function calculates the gap between groupA and groupB (which may be omitted to indicate the full sample). The gap is calculated for one of four statistics:

**the gap in means** The mean score gap (in the score variable) identified in the variable argument. This is the default. The means and their standard errors are calculated using the methods described in the lm.sdf function documentation.

**the gap in percentiles** The gap between respondents at the percentiles specified in the percentiles argument. This is returned when the percentiles argument is defined. The mean and standard error are calculated as described in the percentile function documentation.

**the gap in achievement levels** The gap in the percentage of students at (when achievementDiscrete is TRUE) or at or above (when achievementDiscrete is FALSE) a particular achievement level. This is used when the achievementLevel argument is defined. The mean and standard error are calculated as described in the achievementLevels function documentation.

**the gap in a survey response** The gap in the percentage of respondents responding at targetLevel to variable. This is used when targetLevel is defined. The mean and standard deviation are calculated as described in the edsurveyTable function documentation.
Value

The return type depends on if the class of the data argument is an `edsurvey.data.frame` or an `edsurvey.data.frame.list`. Both include the call (called `call`), a list called `labels`, an object named `percentage` that shows the percentage in `groupA` and `groupB`, and an object that shows the gap called `results`.

The labels include the following elements:

- `definition` the definitions of the groups
- `nFullData` the n-size for the full dataset (before applying the definition)
- `nUsed` the n-size for the data after the group is subsetted and other restrictions (such as omitted values) are applied
- `nPSU` the number of PSUs used in calculation—only returned when `returnNumberOfPSU = TRUE`

The percentages are computed according to the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Weighted Percentages When Plausible Values Are Not Present.” The standard errors are calculated according to “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Jackknife Method.” Standard errors of differences are calculated as the square root of the typical variance formula

$$Var(A - B) = Var(A) + Var(B) - 2Cov(A, B)$$

where the covariance term is calculated as described in the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Covariances.” These degrees of freedom are available only with the jackknife variance estimation. The degrees of freedom used for hypothesis testing are always set to the number of jackknife replicates in the data.

**the data argument is an edsurvey.data.frame** When the data argument is an `edsurvey.data.frame`, `gap` returns an S3 object of class `gap`.

The percentage object is a numeric vector with the following elements:

- `pctA` the percentage of respondents in `groupA` compared with the whole sample in `data`
- `pctAse` the standard error on the percentage of respondents in `groupA`
- `dofA` degrees of freedom appropriate for a t-test involving `pctA`. This value is returned only if `returnSimpleDoF=TRUE`.
- `pctB` the percentage of respondents in `groupB`.
- `pctBse` the standard error on the percentage of respondents in `groupB`
- `dofB` degrees of freedom appropriate for a t-test involving `pctA`. This value is returned only if `returnSimpleDoF=TRUE`.
- `diffAB` the value of `pctA` minus `pctB`
- `covAB` the covariance of `pctA` and `pctB`; used in calculating `diffABse`.
- `diffABse` the standard error of `pctA` minus `pctB`
- `diffABpValue` the p-value associated with the t-test used for the hypothesis test that `diffAB` is zero
The results object is a numeric data frame with the following elements:

- **estimateA**: the mean estimate of groupA (or the percentage estimate if achievementLevel or targetLevel is specified)
- **estimateAse**: the standard error of estimateA
- **dofA**: degrees of freedom appropriate for a t-test involving meanA. This value is returned only if returnSimpleDoF=TRUE.
- **estimateB**: the mean estimate of groupB (or the percentage estimate if achievementLevel or targetLevel is specified)
- **estimateBse**: the standard error of estimateB
- **dofB**: degrees of freedom appropriate for a t-test involving meanB. This value is returned only if returnSimpleDoF=TRUE.
- **diffAB**: the value of estimateA minus estimateB
- **covAB**: the covariance of estimateA and estimateB. Used in calculating diffABse.
- **diffABse**: the standard error of diffAB
- **diffABpValue**: the p-value associated with the t-test used for the hypothesis test that diffAB is zero.
- **dofAB**: degrees of freedom used for the t-test on diffAB

If the gap was in achievement levels or percentiles and more than one percentile or achievement level is requested, then an additional column labeled percentiles or achievementLevel is included in the results object.

When results has a single row and when returnVarEstInputs is TRUE, the additional elements varEstInputs and pctVarEstInputs also are returned. These can be used for calculating covariances with `varEstToCov`.

**the data argument is an edsurvey.data.frame.list** When the data argument is an edsurvey.data.frame.list, gap returns an S3 object of class gapList.

The results object in the edsurveyResultList is a data.frame. Each row regards a particular dataset from the edsurvey.data.frame, and a reference dataset is dictated by the referenceDataIndex argument.

The percentage object is a data.frame with the following elements:

- **covs**: a data frame with a column for each column in the covs. See previous section for more details.
- **diffAA**: the difference in pctA between the reference data and this dataset. Set to NA for the reference dataset.
- **covAA**: the covariance of pctA in the reference data and pctA on this row. Used in calculating diffAAs.
- **diffAAs**: the standard error for diffAA
- **diffAAPValue**: the p-value associated with the t-test used for the hypothesis test that diffAA is zero
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffBB</td>
<td>the difference in pctB between the reference data and this dataset. Set to NA for the reference dataset.</td>
</tr>
<tr>
<td>covBB</td>
<td>the covariance of pctB in the reference data and pctB on this row. Used in calculating diffAse.</td>
</tr>
<tr>
<td>diffBBse</td>
<td>the standard error for diffBB</td>
</tr>
<tr>
<td>diffBBpValue</td>
<td>the p-value associated with the t-test used for the hypothesis test that diffBB is zero</td>
</tr>
<tr>
<td>diffABAB</td>
<td>the value of diffAB in the reference dataset minus the value of diffAB in this dataset. Set to NA for the reference dataset.</td>
</tr>
<tr>
<td>covABAB</td>
<td>the covariance of diffAB in the reference data and diffAB on this row. Used in calculating diffABse.</td>
</tr>
<tr>
<td>diffABABse</td>
<td>the standard error for diffABAB</td>
</tr>
<tr>
<td>diffABABpValue</td>
<td>the p-value associated with the t-test used for the hypothesis test that diffABAB is zero</td>
</tr>
</tbody>
</table>

The `results` object is a data.frame with the following elements:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>all elements in the <code>results</code> object in the previous section</td>
</tr>
<tr>
<td>diffAA</td>
<td>the value of groupA in the reference dataset minus the value in this dataset. Set to NA for the reference dataset.</td>
</tr>
<tr>
<td>covAA</td>
<td>the covariance of meanA in the reference data and meanA on this row. Used in calculating diffAse.</td>
</tr>
<tr>
<td>diffAAse</td>
<td>the standard error for diffAA</td>
</tr>
<tr>
<td>diffAAPValue</td>
<td>the p-value associated with the t-test used for the hypothesis test that diffAA is zero</td>
</tr>
<tr>
<td>diffBB</td>
<td>the value of groupB in the reference dataset minus the value in this dataset. Set to NA for the reference dataset.</td>
</tr>
<tr>
<td>covBB</td>
<td>the covariance of meanB in the reference data and meanB on this row. Used in calculating diffBBse.</td>
</tr>
<tr>
<td>diffBBse</td>
<td>the standard error for diffBB</td>
</tr>
<tr>
<td>diffBBpValue</td>
<td>the p-value associated with the t-test used for the hypothesis test that diffBB is zero</td>
</tr>
<tr>
<td>diffABAB</td>
<td>the value of diffAB in the reference dataset minus the value of diffAB in this dataset. Set to NA for the reference dataset.</td>
</tr>
<tr>
<td>covABAB</td>
<td>the covariance of diffAB in the reference data and diffAB on this row. Used in calculating diffABse.</td>
</tr>
<tr>
<td>diffABABse</td>
<td>the standard error for diffABAB</td>
</tr>
<tr>
<td>diffABABpValue</td>
<td>the p-value associated with the t-test used for the hypothesis test that diffABAB is zero</td>
</tr>
<tr>
<td>sameSurvey</td>
<td>a logical value indicating if this line uses the same survey as the reference line. Set to NA for the reference line.</td>
</tr>
</tbody>
</table>
Author(s)

Paul Bailey, Trang Nguyen, and Huade Huo

Examples

## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# find the mean score gap in the primer data between males and females
gap("composite", sdf, dsex="Male", dsex="Female")

# find the score gap of the quartiles in the primer data between males and females
gap("composite", sdf, dsex="Male", dsex="Female", percentile=50)
gap("composite", sdf, dsex="Male", dsex="Female", percentile=c(25, 50, 75))

# find the percent proficient (or higher) gap in the primer data between males and females
gap("composite", sdf, dsex="Male", dsex="Female", achievementLevel=c("Basic", "Proficient", "Advanced"))

# find the discrete achievement level gap--this is harder to interpret
gap("composite", sdf, dsex="Male", dsex="Female", achievementLevel="Proficient", achievementDiscrete=TRUE)

# find the percent talk about studies at home (b017451) never or hardly ever gap in the primer data between males and females
gap("b017451", sdf, dsex="Male", dsex="Female", targetLevel="Never or hardly ever")

# example showing how to compare multiple levels
gap("b017451", sdf, dsex="Male", dsex="Female", targetLevel="Infrequently", recode=list(b017451=list(from=c("Never or hardly ever", "Once every few weeks", "About once a week"), to=c("Infrequently"))))

# make subsets of sdf by scrpsu, "Scrambled PSU and school code"
sdfA <- subset(sdf, scrpsu %in% c(5, 45, 56))
sdfB <- subset(sdf, scrpsu %in% c(75, 76, 78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

sdfl <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD), labels=c("A locations", "B locations", "C locations", "D locations"))

gap("composite", sdfl, dsex="Male", dsex="Female", percentile=c(50))

# example showing using linking error with gap
# load Grade 4 math data
g4math2015 <- readNAEP(".../M46NT1AT.dat")
g4math2017 <- readNAEP(".../M48NT1AT.dat")
```
g4math2019 <- readNAEP(".../M50NT1AT.dat")

make an edsurvey.data.frame.list from math grade 4 2015, 2017, and 2019 data
g4math <- edsurvey.data.frame.list(list(g4math2019, g4math2017, g4math2015),
 labels = c("2019", "2017", "2015"))

gap analysis with linking error in variance estimation across surveys
-gap("composite", g4math, dsex == "Male", dsex == "Female", includeLinkingError=TRUE)
-gap("composite", g4math, dsex == "Male", dsex == "Female", percentiles = c(10, 25),
 includeLinkingError=TRUE)
-gap("composite", g4math, dsex == "Male", dsex == "Female",
 achievementDiscrete = TRUE, achievementLevel=c("Basic", "Proficient", "Advanced"),
 includeLinkingError=TRUE)

End(Not run)
```

---

**getData**  
**Read Data to a Data Frame**

**Description**

Reads in selected columns to a data.frame or a light.edsurvey.data.frame. On an edsurvey.data.frame, the data are stored on disk.

**Usage**

```
getData(
 data,
 varnames = NULL,
 drop = FALSE,
 dropUnusedLevels = TRUE,
 omittedLevels = TRUE,
 defaultConditions = TRUE,
 formula = NULL,
 recode = NULL,
 includeNaLabel = FALSE,
 addAttributes = FALSE,
 returnJKreplicates = TRUE
)
```

**Arguments**

- **data**
  - an edsurvey.data.frame or a light.edsurvey.data.frame

- **varnames**
  - a character vector of variable names that will be returned. When both varnames and a formula are specified, variables associated with both are returned. Set to NULL by default.
getData

drop a logical value. When set to the default value of FALSE, when a single column is returned, it is still represented as a data.frame and is not converted to a vector.

dropUnusedLevels a logical value. When set to the default value of TRUE, drops unused levels of all factor variables.

omittedLevels a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels. The omitted levels also can be adjusted with setAttributes; see Examples.

defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.

formula a formula. When included, getData returns data associated with all variables of the formula. When both varnames and a formula are specified, the variables associated with both are returned. Set to NULL by default.

recode a list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a", "b", "c"), to = "d")). See Examples.

includeNaLabel a logical value to indicate if NA (missing) values are returned as literal NA values or as factor levels coded as NA

addAttributes a logical value set to TRUE to get a data.frame that can be used in calls to other functions that usually would take an edsurvey.data.frame. This data.frame also is called a light.edsurvey.data.frame. See Description section in edsurvey.data.frame for more information on light.edsurvey.data.frame.

returnJKreplicates a logical value indicating if JK replicate weights should be returned. Defaults to TRUE.

Details

By default, an edsurvey.data.frame does not have data read into memory until getData is called and returns a data frame. This structure allows EdSurvey to have a minimal memory footprint. To keep the footprint small, you need to limit varnames to just the necessary variables.

There are two methods of attaching survey attributes to a data.frame to make it usable by the functions in the EdSurvey package (e.g., lm.sdf): (a) setting the addAttributes argument to TRUE at in the call to getData or (b) by appending the attributes to the data frame with rebindAttributes.

When getData is called, it returns a data frame. Setting the addAttributes argument to TRUE adds the survey attributes and changes the resultant data.frame to a light.edsurvey.data.frame. Alternatively, a data.frame can be coerced into a light.edsurvey.data.frame using rebindAttributes. See Examples in the rebindAttributes documentation.

If both formula and varnames are populated, the variables on both will be included.

See the vignette titled Using the getData Function in EdSurvey for long-form documentation on this function.
Value

When `addAttributes` is `FALSE`, `getData` returns a `data.frame` containing data associated with the requested variables. When `addAttributes` is `TRUE`, `getData` returns a `light.edsurvey.data.frame`.

Author(s)

Tom Fink, Paul Bailey, and Ahmad Emad

See Also

`rebindAttributes`, `subset.edsurvey.data.frame`

Examples

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

get two variables, without weights
df <- getData(data = sdf, varnames = c("dsex", "b017451"))
table(df)

example of using recode
df2 <- getData(data = sdf, varnames = c("dsex", "t088301"),
 recode = list(t088301=list(from=c("Yes, available","Yes, I have access"),
 to=c("Yes")),
 t088301=list(from=c("No, have no access"),
 to=c("No"))))
table(df2)

when readNAEP is called on a data file, it appends a default
condition to the edsurvey.data.frame. You can see these conditions
by printing the sdf
sdf

As per the default condition specified, getData restricts the data to only
Reporting Sample. This behavior can be changed as follows:
df2 <- getData(data = sdf, varnames = c("dsex", "b017451"), defaultConditions = FALSE)
table(df2)

similarly, the default behavior of omitting certain levels specified
in the edsurvey.data.frame can be changed as follows:
df2 <- getData(data = sdf, varnames = c("dsex", "b017451"), omittedLevels = FALSE)
table(df2)

omittedLevels can also be edited with setAttributes()
here, the omitted level "Multiple" is removed from the list
sdfIncludeMultiple <- setAttributes(sdf, "omittedLevels", c(NA, "Omitted"))
check that it was set
getAttributes(sdfIncludeMultiple, "omittedLevels")
notice that omittedLevels is TRUE, removing NA and "Omitted" still
dfIncludeMultiple <- getData(data = sdfIncludeMultiple, varnames = c("dsex", "b017451"))
table(dfIncludeMultiple)
```
# the variable "c052601" is from the school-level data file; merging is handled automatically.
# returns a light.edsurvey.data.frame using addAttributes=TRUE argument
gddat <- getData(data=sdf,
    varnames=c("composite", "dsex", "b017451", "c052601"),
    addAttributes = TRUE)

class(gddat)
# look at the first few lines
head(gddat)

# get a selection of variables, recode using ifelse, and reappend attributes
# with rebindAttributes so that it can be used with EdSurvey analysis functions
df0 <- getData(sdf, c("composite", "dsex", "b017451", "origwt"))
df0$sex <- ifelse(df0$dsex=="Male", "boy", "girl")
df0 <- rebindAttributes(df0, sdf)

## Not run:
# getting all the data can use up all the memory and is generally a bad idea
df0 <- getData(sdf, varnames=colnames(sdf),
    omittedLevels=FALSE, defaultConditions=FALSE)

## End(Not run)

---

**getPlausibleValue**

*Get Plausible Value Variables*

**Description**

Gets the set of variables on an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list associated with the given subject or subscale.

**Usage**

getPlausibleValue(var, data)

**Arguments**

- **var**
  a character vector naming the subject scale or subscale
- **data**
  an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

**Details**

This function will return a set of plausible value names for variables that `hasPlausibleValue` returns as true.

**Value**

a character vector of the set of variable names for the plausible values
**getWeightJkReplicates**

**Author(s)**
Michael Lee and Paul Bailey

**See Also**

`showPlausibleValues`, `updatePlausibleValue`

**Examples**

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

getPlausibleValue(var="composite", data=sdf)
```

---

**getWeightJkReplicates**  
Retrieve the Jackknife Replicate Weights

**Description**

Returns the jackknife replicate weights on an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list` associated with a weight variable.

**Usage**

```r
getWeightJkReplicates(var, data)
```

**Arguments**

- `var`  
  character indicating the name of the weight variable for which the jackknife replicate weights are desired
- `data`  
  an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`

**Value**

a character vector of the jackknife replicate weights

**Author(s)**

Michael Lee and Paul Bailey

**Examples**

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

getWeightJkReplicates(var="origwt", data=sdf)
```
glm.sdf

EdSurvey Generalized Linear Models

Description

Fits a logit or probit that uses weights and variance estimates appropriate for the edsurvey.data.frame, the light.edsurvey.data.frame, or the edsurvey.data.frame.list.

Usage

```r
glm.sdf(formula, family = binomial(link = "logit"), data,
weightVar = NULL, relevels = list(),
varMethod=c("jackknife", "Taylor"), jrrIMax = 1,
 omittedLevels = TRUE, defaultConditions = TRUE, recode = NULL,
returnNumberOfPSU=FALSE, returnVarEstInputs = FALSE)
```

```r
logit.sdf(
 formula,
data,
weightVar = NULL,
relevels = list(),
varMethod = c("jackknife", "Taylor"),
jrrIMax = 1,
 omittedLevels = TRUE,
 defaultConditions = TRUE, recode = NULL,
returnNumberOfPSU=FALSE, returnVarEstInputs = FALSE)
)
```

```r
probit.sdf(
 formula,
data,
weightVar = NULL,
relevels = list(),
varMethod = c("jackknife", "Taylor"),
jrrIMax = 1,
 omittedLevels = TRUE,
 defaultConditions = TRUE, recode = NULL,
returnVarEstInputs = FALSE)
)
```

Arguments

- **formula** a formula for the linear model. See glm. For logit and probit, we recommend using the `I()` function to define the level used for success. (See Examples.)
The \texttt{glm.sdf} function currently fits only the binomial outcome models, such as \texttt{logit} and \texttt{probit}, although other link functions are available for binomial models. See the \texttt{link} argument in the help for \texttt{family}.

\textbf{data}  
an \texttt{edsurvey.data.frame}

\textbf{weightVar}  
character indicating the weight variable to use (see Details). The \texttt{weightVar} must be one of the weights for the \texttt{edsurvey.data.frame}. If NULL, uses the default for the \texttt{edsurvey.data.frame}.

\textbf{relevels}  
a list; used to change the contrasts from the default treatment contrasts to the treatment contrasts with a chosen omitted group. The name of each element should be the variable name, and the value should be the group to be omitted.

\textbf{varMethod}  
a character set to “jackknife” or “Taylor” that indicates the variance estimation method to be used. See Details.

\textbf{jrrIMax}  
the \texttt{Vjrr} sampling variance term (see \textit{Statistical Methods Used in EdSurvey}) can be estimated with any positive number of plausible values and is estimated on the lower of the number of available plausible values and \texttt{jrrIMax}. When \texttt{jrrIMax} is set to \texttt{Inf}, all plausible values will be used. Higher values of \texttt{jrrIMax} lead to longer computing times and more accurate variance estimates.

\textbf{omittedLevels}  
a logical value. When set to the default value of \texttt{TRUE}, drops those levels of all factor variables that are specified in \texttt{edsurvey.data.frame}. Use \texttt{print} on an \texttt{edsurvey.data.frame} to see the omitted levels.

\textbf{defaultConditions}  
a logical value. When set to the default value of \texttt{TRUE}, uses the default conditions stored in an \texttt{edsurvey.data.frame} to subset the data. Use \texttt{print} on an \texttt{edsurvey.data.frame} to see the default conditions.

\textbf{recode}  
a list of lists to recode variables. Defaults to \texttt{NULL}. Can be set as \texttt{recode=list(var1=list(from=c("a", "b", "c"), to="d"))}.

\textbf{returnNumberOfPSU}  
a logical value set to \texttt{TRUE} to return the number of primary sampling units (PSUs)

\textbf{returnVarEstInputs}  
a logical value set to \texttt{TRUE} to return the inputs to the jackknife and imputation variance estimates, which allow for the computation of covariances between estimates.

\textbf{Details}

This function implements an estimator that correctly handles left-hand side variables that are logical, allows for survey sampling weights, and estimates variances using the jackknife replication or Taylor series. The vignette titled \textit{Statistical Methods Used in EdSurvey} describes estimation of the reported statistics and how it depends on \texttt{varMethod}.

The coefficients are estimated using the sample weights according to the section “Estimation of Weighted Means When Plausible Values Are Not Present” or the section “Estimation of Weighted Means When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.
How the standard errors of the coefficients are estimated depends on the presence of plausible values (assessment variables). But once it is obtained, the \( t \) statistic is given by

\[
t = \frac{\hat{\beta}}{\sqrt{\text{var}(\hat{\beta})}}
\]

where \( \hat{\beta} \) is the estimated coefficient and \( \text{var}(\hat{\beta}) \) is its variance of that estimate.

`logit.sdf` and `probit.sdf` are included for convenience only; they give the same results as a call to `glm.sdf` with the binomial family and the link function named in the function call (logit or probit). By default, `glm` fits a logistic regression when `family` is not set, so the two are expected to give the same results in that case. Other types of generalized linear models are not supported.

**Variance estimation of coefficients:** All variance estimation methods are shown in the vignette titled *Statistical Methods Used in EdSurvey*. When the predicted value does not have plausible values and `varMethod` is set to `jackknife`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present and `varMethod` is set to `jackknife`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

When the predicted value does not have plausible values and `varMethod` is set to `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Taylor Series Method.”

When plausible values are present and `varMethod` is set to `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method.”

**Value**

An `edsurveyGlm` with the following elements:

- `call` the function call
- `formula` the formula used to fit the model
- `coef` the estimates of the coefficients
- `se` the standard error estimates of the coefficients
- `Vimp` the estimated variance caused by uncertainty in the scores (plausible value variables)
- `Vjrr` the estimated variance from sampling
- `M` the number of plausible values
- `nPSU` the number of PSUs used in the calculation
- `varm` the variance estimates under the various plausible values
- `coefm` the values of the coefficients under the various plausible values
- `coefmat` the coefficient matrix (typically produced by the summary of a model)
- `weight` the name of the weight variable
npv the number of plausible values
njk the number of the jackknife replicates used
varMethod always jackknife
varEstInputs when returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.

Testing

Of the common hypothesis tests for joint parameter testing, only the Wald test is widely used with plausible values and sample weights. As such, it replaces, if imperfectly, the Akaike Information Criteria (AIC), the likelihood ratio test, chi-squared, and analysis of variance (ANOVA, including F-tests). See waldTest or the vignette titled Methods and Overview of Using EdSurvey for Running Wald Tests.

Author(s)
Paul Bailey

See Also
glm

Examples

## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# by default uses the jackknife variance method using replicate weights
table(sdf$b013801)
logit1 <- logit.sdf(I(b013801 %in% c("26-100", ">100")) ~ dsex + b017451, data=sdf)
# use summary to get detailed results
summary(logit1)

# Taylor series variance estimation
logit1t <- logit.sdf(I(b013801 %in% c("26-100", ">100")) ~ dsex + b017451, data=sdf, varMethod="Taylor")
summary(logit1t)

logit2 <- logit.sdf(I(composite >= 300) ~ dsex + b013801, data=sdf)
summary(logit2)

logit3 <- glm.sdf(I(composite >= 300) ~ dsex + b013801, data=sdf, family=quasibinomial(link="logit"))

# Wald test for joint hypothesis that all coefficients in b013801 are zero
waldTest(logit3, "b013801")

summary(logit3)

## End(Not run)
hasPlausibleValue  

Plausible Value Test

Description

Returns a value indicating if this variable has associated plausible values in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

hasPlausibleValue(var, data)

Arguments

var  
a character indicating the variable in question

data  
an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Details

This function returns TRUE only when the variable passed to it is the name for a set of plausible values but not if it is an individual plausible value from such a set. Thus, on the NAEP Primer, composite has plausible values (and so TRUE would be returned by this function), but any of the plausible values or variable names defined in the actual data (such as "mrcm1" or "dsex") are not.

Value

a Boolean (or vector when var is a vector) indicating if each element of var has plausible values associated with it

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# TRUE
hasPlausibleValue(var="composite", data=sdf)

# FALSE
hasPlausibleValue(var="dsex", data=sdf)
isWeight  

---  

**Description**

Returns logical values indicating whether a vector of variables is a weight for an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.

**Usage**

```r
isWeight(var, data)
```

**Arguments**

- `var`: a character vector of variables
- `data`: an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`

**Details**

Note that this function returns `TRUE` only when the `var` element is the name of the weight used for making estimates but not if it is one of the individual jackknife replicates.

**Value**

A logical vector of values indicating if each element of `var` is a weight

**Author(s)**

Michael Lee and Paul Bailey

**Examples**

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

TRUE
isWeight(var="origwt", data=sdf)

FALSE
isWeight(var="dsex", data=sdf)
```
levelsSDF

Print Levels and Labels

Description

Retrieve the levels and labels of a variable from an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

levelsSDF(varnames, data, showOmitted = TRUE, showN = TRUE)

Arguments

varnames a vector of character strings to search for in the database connection object (data)
data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.listshowOmitted a Boolean indicating if omitted levels should be shownshowN a Boolean indicating if (unweighted) n-sizes should be shown for each response level

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# search variables in the sdf
levelsSDF(varnames="pared", data=sdf)

# search multiple variables
levelsSDF(varnames=c("pared","ell3"), data=sdf)

# search multiple variables in a light.edsurvey.data.frame with recodes
df2 <- getData(data=sdf, varnames=c("dsex","t088301"),
    recode=list(t088301=list(from=c("Yes, available","Yes, I have access"),
    to=c("Yes")),
    t088301=list(from=c("No, have no access"),
    to=c("No"))),
    addAttributes=TRUE)
levelsSDF(varnames=c("dsex","t088301"), data=df2)
Description

Fits a linear model that uses weights and variance estimates appropriate for the data.

Usage

```r
lm.sdf(formula, data, weightVar = NULL, relevels = list(),
 varMethod = c("jackknife", "Taylor"), jrrIMax = 1,
 omittedLevels = TRUE, defaultConditions = TRUE, recode = NULL,
 returnVarEstInputs = FALSE, returnNumberOfPSU = FALSE,
 standardizeWithSamplingVar = FALSE)
```

Arguments

- `formula`: a formula for the linear model. See `lm`. If `y` is left blank, the default subject scale or subscale variable will be used. (You can find the default using `showPlausibleValues`.) If `y` is a variable for a subject scale or subscale (one of the names shown by `showPlausibleValues`), then that subject scale or subscale is used.

- `data`: an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.

- `weightVar`: a character indicating the weight variable to use (see Details). The `weightVar` must be one of the weights for the `edsurvey.data.frame`. If `NULL`, it uses the default for the `edsurvey.data.frame`.

- `relevels`: a list. Used to change the contrasts from the default treatment contrasts to the treatment contrasts with a chosen omitted group (the reference group). The name of each element should be the variable name, and the value should be the group to be omitted (the reference group).

- `varMethod`: a character set to “jackknife” or “Taylor” that indicates the variance estimation method to be used. See Details.

- `jrrIMax`: a numeric value; when using the jackknife variance estimation method, the default estimation option, `jrrIMax=1`, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The `Vjrr` term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including `Inf`) will result in all plausible values being used. Higher values of `jrrIMax` lead to longer computing times and more accurate variance estimates.

- `omittedLevels`: a logical value. When set to the default value of `TRUE`, drops those levels of all factor variables that are specified in an `edsurvey.data.frame`. Use `print` on an `edsurvey.data.frame` to see the omitted levels.
defaultConditions

- a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.

recode

- a list of lists to recode variables. Defaults to NULL. Can be set as recode=list(var1 = list(from= c("a", "b", "c"), to= "d")). See Examples.

returnVarEstInputs

- a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allow for the computation of covariances between estimates.

returnNumberOfPSU

- a logical value set to TRUE to return the number of primary sampling units (PSUs)

standardizeWithSamplingVar

- a logical value indicating if the standardized coefficients should have the variance of the regressors and outcome measured with sampling variance. Defaults to FALSE.

Details

This function implements an estimator that correctly handles left-hand side variables that are either numeric or plausible values and allows for survey sampling weights and estimates variances using the jackknife replication method. The vignette titled Statistical Methods Used in EdSurvey describes estimation of the reported statistics.

Regardless of the variance estimation, the coefficients are estimated using the sample weights according to the sections “Estimation of Weighted Means When Plausible Values Are Not Present” or “Estimation of Weighted Means When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.

How the standard errors of the coefficients are estimated depends on the value of varMethod and the presence of plausible values (assessment variables). But once it is obtained, the t statistic is given by

\[ t = \frac{\hat{\beta}}{\sqrt{\text{var}(\hat{\beta})}} \]

where \( \hat{\beta} \) is the estimated coefficient and \( \text{var}(\hat{\beta}) \) is the variance of that estimate.

The coefficient of determination (R-squared value) is similarly estimated by finding the average R-squared using the average across the plausible values.

**Standardized regression coefficients:** Standardized regression coefficients can be returned in a call to summary, by setting the argument src to TRUE. See Examples.

By default, the standardized coefficients are calculated using standard deviations of the variables themselves, including averaging the standard deviation across any plausible values. When standardizeWithSamplingVar is set to TRUE, the variance of the standardized coefficient is calculated similar to a regression coefficient and therefore includes the sampling variance in the variance estimate of the outcome variable.
**Variance estimation of coefficients:** All variance estimation methods are shown in the vignette titled *Statistical Methods Used in EdSurvey*. When `varMethod` is set to the `jackknife` and the predicted value does not have plausible values, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present and `varMethod` is `jackknife`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

When plausible values are not present and `varMethod` is `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Taylor Series Method.”

When plausible values are present and `varMethod` is `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method.”

**Value**

An `edsurvey.lm` with the following elements:

- **call** the function call
- **formula** the formula used to fit the model
- **coef** the estimates of the coefficients
- **se** the standard error estimates of the coefficients
- **Vimp** the estimated variance from uncertainty in the scores (plausible value variables)
- **Vjrr** the estimated variance from sampling
- **M** the number of plausible values
- **varm** the variance estimates under the various plausible values
- **coefm** the values of the coefficients under the various plausible values
- **coefmat** the coefficient matrix (typically produced by the summary of a model)
- **r.squared** the coefficient of determination
- **weight** the name of the weight variable
- **nvp** the number of plausible values
- **jrrIMax** the `jrrIMax` value used in computation
- **njk** the number of the jackknife replicates used; set to `NA` when Taylor series variance estimates are used
- **varMethod** one of Taylor series or the jackknife
- **residuals** residuals from the average regression coefficients
- **PV.residuals** residuals from the by plausible value coefficients
- **PV.fitted.values** fitted values from the by plausible value coefficients
- **B** imputation variance covariance matrix, before multiplication by 
  \[(M+1)/M\]
- **U** sampling variance covariance matrix
average relative increase in variance; see van Buuren (2012, eq. 2.29)
number of PSUs used in calculation
number of rows on an edsurvey.data.frame before any conditions were applied
number of observations with valid data and weights larger than zero
data used for the computation
standard deviations of regressors, used for computing standardized regression coefficients when standardizeWithSamplingVar is set to FALSE (the default)
the result of running summary2 (unweighted) on each variable in the regression
when returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.
when standardizeWithSamplingVar is set to TRUE, this element is returned. Calculates the standard deviation of the standardized regression coefficients like any other variable.

Testing

Of the common hypothesis tests for joint parameter testing, only the Wald test is widely used with plausible values and sample weights. As such, it replaces, if imperfectly, the Akaike Information Criteria (AIC), the likelihood ratio test, chi-squared, and analysis of variance (ANOVA, including F-tests). See waldTest or the vignette titled Methods and Overview of Using EdSurvey for Running Wald Tests.

Author(s)

Paul Bailey

References


See Also

lm

Examples

## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# by default uses jackknife variance method using replicate weights
lm1 <- lm.sdf(composite ~ dsex + b017451, data=sdf)

# the summary function displays detailed results
summary(lm1)

# to show standardized regression coefficients
summary(lm1, src=TRUE)

# to specify a variance method, use varMethod
lm2 <- lm.sdf(composite ~ dsex + b017451, data=sdf, varMethod="Taylor")

summary(lm2)

# use relevel to set a new omitted category
lm3 <- lm.sdf(composite ~ dsex + b017451, data=sdf, relevels=list(dsex="Female"))

summary(lm3)

# test of a simple joint hypothesis
waldTest(lm3, "b017451")

# use recode to change values for specified variables
lm4 <- lm.sdf(composite ~ dsex + b017451, data=sdf,
recode=list(b017451=list(from=c("Never or hardly ever","Once every few weeks","About once a week"),
to=c("Infrequently")),
b017451=list(from=c("2 or 3 times a week","Every day"),
to=c("Frequently"))))

# Note: "Infrequently" is the dropped level for the recoded b017451
summary(lm4)

## End(Not run)

merge

EdSurvey Merge

Description

Takes a data.frame or a light.edsurvey.data.frame and merges with a light.edsurvey.data.frame.

Usage

## S3 method for class 'light.edsurvey.data.frame'
merge(x, y, ...)

Arguments

x a light.edsurvey.data.frame. The attributes of the resulting light.edsurvey.data.frame are taken from x.
mixed.sdf

EdSurvey Mixed-Effects Model

Description

Fits a linear weighted mixed-effects model.

Usage

mixed.sdf(
  formula,
  data,
  weightVars = NULL,
  weightTransformation = TRUE,
mixed.sdf

recode = NULL,
defaultConditions = TRUE,
tolerance = 0.01,
nQuad = NULL,
verbose = 0,
family = NULL,
centerGroup = NULL,
centerGrand = NULL,
fast = FALSE,
...
)

Arguments

formula a formula for the multilevel regression or mixed model. See Examples and the vignette titled Methods Used for Estimating Mixed-Effects Models in EdSurvey for more details on how to specify a mixed model. If y is left blank, the default subject scale or subscale variable will be used. (You can find the default using showPlausibleValues.) If y is a variable for a subject scale or subscale (one of the names shown by showPlausibleValues), then that subject scale or subscale is used.
data an edsurvey.data.frame or a light.edsurvey.data.frame
weightVars character vector indicating weight variables for corresponding levels to use. The weightVar must be the weights for the edsurvey.data.frame. The weight variables must be in the order of level (from lowest to highest level).
weightTransformation a logical value to indicate whether the function should standardize weights before using it in the multilevel model. If set to TRUE, the function will look up standard weight transformation methods often used for a specific survey. Weight transformation can be found in the vignette titled Methods Used for Estimating Mixed-Effects Models in EdSurvey. If set to FALSE or if the survey of the specified data does not have a standard weight transformation method, raw weights will be used.
recode a list of lists to recode variables. Defaults to NULL. Can be set as recode=list(var1
  =list(from= c("a", "b", "c"), to= "d")). See Examples in lm.sdf.
defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
tolerance depreciated, no effect
nQuad depreciated, no effect
verbose an integer; when set to 1, it will print out the brief progress of the function mix.sdf. Users can use these traced messages for further diagnosis. When set to 2, it will print out the detailed progress, including temporary estimates during the optimization. Defaults to 0, which will run the function without output.
family this argument is depreciated; please use the WeMix package’s mix function directly for binomial models.
centerGroup a list in which the name of each element is the name of the aggregation level, and the element is a formula of variable names to be group mean centered. For example, to group mean center gender and age within the group student:
\texttt{list("student"=~gender+age)}. Defaults to \texttt{NULL}, which means predictors are not adjusted by group centering. See Examples in the \texttt{WeMix} function \texttt{mix}.

centerGrand a formula of variable names to be grand mean centered. For example, to center the variable education by overall mean of education: \texttt{~education}. Defaults to \texttt{NULL}, which means predictors are not adjusted by grand centering.

fast deprecated, no effect

... other potential arguments to be used in \texttt{mix}

Details
This function uses the \texttt{mix} call in the \texttt{WeMix} package to fit mixed models. When the outcome does not have plausible values, the variance estimator directly from the \texttt{mix} function is used; these account for covariance at the top level of the model specified by the user.

When the outcome has plausible values, the coefficients are estimated in the same way as in \texttt{lm.sdf}, that is, averaged across the plausible values. In addition, the variance of the coefficients is estimated as the sum of the variance estimate from the \texttt{mix} function and the imputation variance. The formula for the imputation variance is, again, the same as for \texttt{lm.sdf}, with the same estimators as in the vignette titled \textit{Statistical Methods Used in EdSurvey}. In the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method” in the formula for \(V_{imp}\), the variance and estimates of the variance components are estimated with the same formulas as the regression coefficients.

Value
A \texttt{mixedSdfResults} object with the following elements:

- \texttt{call} the original call used in \texttt{mixed.sdf}
- \texttt{formula} the formula used to fit the model
- \texttt{coef} a vector of coefficient estimates
- \texttt{se} a vector with the standard error estimates of the coefficients and the standard error of the variance components
- \texttt{vars} estimated variance components of the model
- \texttt{levels} the number of levels in the model
- \texttt{ICC} the intraclass correlation coefficient of the model
- \texttt{npv} the number of plausible values
- \texttt{ngroups} a \texttt{data.frame} that includes the number of observations for each group
- \texttt{n0} the number of observations in the original data
- \texttt{nused} the number of observations used in the analysis

If the formula does not involve plausible values, the function will return the following additional elements:

- \texttt{lnlf} the likelihood function
mvrlm.sdf

_1n1_ the log-likelihood of the model

If the formula involves plausible values, the function will return the following additional elements:

_Vimp_ the estimated variance from uncertainty in the scores
_Vjrr_ the estimated variance from sampling

**Author(s)**

Paul Bailey, Trang Nguyen, and Claire Kelley

**References**


**See Also**

WeMix `mix` function and `lm.sdf`

**Examples**

```r
Not run:
save TIMSS 2015 data to ~/TIMSS/2015
downloadTIMSS(root="~/", years=2015)
fin <- readTIMSS("~/TIMSS/2015", countries="fin", gradeLvl=4)
uses all plausible values
mix1 <- mixed.sdf(mmat ~ itsex + (1|idschool), data = fin,
 weightVar=c("totwgt","schwgt"), weightTransformation=FALSE)
summary(mix1)
uses only one plausible value
mix2 <- mixed.sdf(asmmat01 ~ itsex + (1|idschool), data = fin,
 weightVar=c("totwgt","schwgt"), weightTransformation=FALSE)
summary(mix2)
End(Not run)
```

---

**Description**

Fits a multivariate linear model that uses weights and variance estimates appropriate for the edsurvey.data.frame.
Usage

```r
mvrlm.sdf(
 formula,
 data,
 weightVar = NULL,
 relevels = list(),
 jrrIMax = 1,
 omittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 returnVarEstInputs = FALSE,
 estMethod = "OLS"
)
```

Arguments

- **formula**: a Formula package Formula for the linear model. See `Formula`; left-hand side variables are separated with vertical pipes (`|`). See Examples.
- **data**: an `edsurvey.data.frame` or an `edsurvey.data.frame.list`
- **weightVar**: character indicating the weight variable to use (see Details). The `weightVar` must be one of the weights for the `edsurvey.data.frame`. If `NULL`, uses the default for the `edsurvey.data.frame`.
- **relevels**: a list. Used to change the contrasts from the default treatment contrasts to treatment contrasts with a chosen omitted group (the reference group). To do this, the user puts an element on the list with the same name as a variable to change contrasts on and then make the value for that list element equal to the value that should be the omitted group (the reference group).
- **jrrIMax**: a numeric value; when using the jackknife variance estimation method, the default estimation option, `jrrIMax=1`, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The $V_{jrr}$ term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including `Inf`) will result in all plausible values being used. Higher values of `jrrIMax` lead to longer computing times and more accurate variance estimates.
- **omittedLevels**: a logical value. When set to the default value of `TRUE`, drops those levels of all factor variables that are specified in `edsurvey.data.frame`. Use `print` on an `edsurvey.data.frame` to see the omitted levels.
- **defaultConditions**: a logical value. When set to the default value of `TRUE`, uses the default conditions stored in `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.
- **recode**: a list of lists to recode variables. Defaults to `NULL`. Can be set as `recode = list(var1=list(from=c("a","b","c"), to ="d"))`. 


returnVarEstInputs

a logical value. Set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allow for computation of covariances between estimates.

estMethod

a character value indicating which estimation method to use. Default is OLS; other option is GLS.

Details

This function implements an estimator that correctly handles multiple left-hand side variables that are either numeric or plausible values, allows for survey sampling weights, and estimates variances using the jackknife replication method. The vignette titled *Statistical Methods Used in EdSurvey* describes estimation of the reported statistics.

The coefficients are estimated using the sample weights according to the section “Estimation of Weighted Means When Plausible Values Are Not Present” or the section “Estimation of Weighted Means When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.

The coefficient of determination (R-squared value) is similarly estimated by finding the average R-squared using the sample weights for each set of plausible values.

**Variance estimation of coefficients**: All variance estimation methods are shown in the vignette titled *Statistical Methods Used in EdSurvey*.

When the predicted value does not have plausible values, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

For more information on the specifics of multivariate regression, see the vignette titled *Methods and Overview of Using EdSurvey for Multivariate Regression*.

Value

An `edsurvey.mvrlm` with elements:

- **call**: the function call
- **formula**: the formula used to fit the model
- **coef**: the estimates of the coefficients
- **se**: the standard error estimates of the coefficients
- **Vimp**: the estimated variance caused by uncertainty in the scores (plausible value variables)
- **Vjrr**: the estimated variance caused by sampling
- **M**: the number of plausible values
- **varm**: the variance estimates under the various plausible values
- **coefm**: the values of the coefficients under the various plausible values
coefmat    the coefficient matrix (typically produced by the summary of a model)
r.squared  the coefficient of determination
weight     the name of the weight variable
npv        the number of plausible values
njk        the number of the jackknife replicates used
varEstInputs When returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.
residuals  residuals for each of the PV models
fitted.values  model fitted values
residCov   residual covariance matrix for dependent variables
residPV    residuals for each dependent variable
inputs     coefficient estimation input matrices
n0         full data n
nUsed      n used for model
B          imputation variance-covariance matrix, before multiplication by (M+1)/M
U          sampling variance-covariance matrix

Author(s)

Alex Lishinski and Paul Bailey

See Also

the stats package lm, lm.sdf

Examples

## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# use | symbol to separate dependent variables in the left-hand side of formula
mvrlm.fit <- mvrlm.sdf(algebra | geometry ~ dsex + m072801, jrrIMax = 5, data = sdf)

# print method returns coefficients, as does coef method
mvrlm.fit
coef(mvrlm.fit)

# for more detailed results, use summary:
summary(mvrlm.fit)

# details of model can also be accessed through components of the returned object; for example:

# coefficients (one column per dependent variable)
mvrlm.fit$coef
# coefficient table with standard errors and p-values (1 table per dependent variable)
oddsRatio

Odds Ratios for edsurveyGlm Models

Description

Converts coefficients from edsurveyGlm logit regression model to odds ratios.

Usage

oddsRatio(model)

Arguments

model an edsurveyGlm model
percentile

Value
An oddsRatio.edsurveyGlm object with the following elements:

OR	odds ratio coefficient estimates
2.5%	lower bound 95% confidence interval
97.5%	upper bound 95% confidence interval

Description
Calculates the percentiles of a numeric variable in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

percentile(
  variable,  # the character name of the variable to percentiles computed, typically a subject scale or subscale
  percentiles, # a numeric vector of percentiles in the range of 0 to 100 (inclusive)
  data,       # an edsurvey.data.frame or an edsurvey.data.frame.list
  weightVar = NULL,   # a character indicating the weight variable to use.
  jrrIMax = 1,        # a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr}
  varMethod = c("jackknife", "Taylor"), # character indicating the variance estimation method.
  alpha = 0.05,      # significance level for the confidence interval.
  omittedLevels = TRUE, # if TRUE, exclude levels with 0 weights.
  defaultConditions = TRUE, # if TRUE, use default conditions.
  recode = NULL,     # a character indicating the recode method.
  returnVarEstInputs = FALSE, # return variance estimation inputs.
  returnNumberOfPSU = FALSE, # return number of PSU.
  pctMethod = c("unbiased", "simple"), # percentiles method.
  confInt = TRUE)   # if TRUE, calculate confidence interval.

Arguments

variable	the character name of the variable to percentiles computed, typically a subject scale or subscale
percentiles	a numeric vector of percentiles in the range of 0 to 100 (inclusive)
data	an edsurvey.data.frame or an edsurvey.data.frame.list
weightVar	a character indicating the weight variable to use.
jrrIMax	a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr}
Percentiles, their standard errors, and confidence intervals are calculated according to the vignette titled *Statistical Methods Used in EdSurvey*. The standard errors and confidence intervals are based on separate formulas and assumptions.

The Taylor series variance estimation procedure is not relevant to percentiles because percentiles are not continuously differentiable.

**Value**

The return type depends on whether the class of the data argument is an edsurvey.data.frame or an edsurvey.data.frame.list.

**The data argument is an edsurvey.data.frame** When the data argument is an edsurvey.data.frame, percentile returns an S3 object of class percentile. This is a data.frame with typical attributes (names, row.names, and class) and additional attributes as follows:
percentile

n0  number of rows on edsurvey.data.frame before any conditions were applied
nUsed  number of observations with valid data and weights larger than zero
nPSU  number of PSUs used in the calculation
call  the call used to generate these results

The columns of the data.frame are as follows:

percentile  the percentile of this row
estimate  the estimated value of the percentile
se  the jackknife standard error of the estimated percentile
df  degrees of freedom
confInt.ci_lower  the lower bound of the confidence interval
confInt.ci_upper  the upper bound of the confidence interval
nsmall  the number of units with more extreme results, averaged across plausible values

When the confInt argument is set to FALSE, the confidence intervals are not returned.

The data argument is an edsurvey.data.frame.list When the data argument is an edsurvey.data.frame.list, percentile returns an S3 object of class percentileList. This is a data.frame with a call attribute. The columns in the data.frame are identical to those in the previous section, but there also are columns from the edsurvey.data.frame.list.

covs  a column for each column in the covs value of the edsurvey.data.frame.list.

See Examples.

When returnVarEstInputs is TRUE, an attribute varEstInputs also is returned that includes the variance estimate inputs used for calculating covariances with varEstToCov.

Author(s)

Paul Bailey

References


Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M30NT2PM.dat", package="NAEPprimer"))

# get the median of the composite
percentile("composite", 50, sdf)

## Not run:
# get several percentiles
percentile("composite", c(0,1,25,50,75,99,100), sdf)
# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5, 45, 56))
sdfB <- subset(sdf, scrpsu %in% c(75, 76, 78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

sdf1 <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD),
   labels=c("A locations",
             "B locations",
             "C locations",
             "D locations"))

# this shows how these datasets will be described:
sdf1$covs

percentile("composite", 50, sdf1)
percentile("composite", c(25, 50, 75), sdf1)

## End(Not run)

print.achievementLevels

## S3 method for class 'achievementLevels'
print(x, printCall = TRUE, printDiscrete = TRUE, printCumulative = TRUE, ...)

Arguments

- **x**: an achievementLevels object
- **printCall**: a logical value; by default (TRUE), prints details about plausible values and weights used for calculating achievement levels
- **printDiscrete**: a logical value; by default (TRUE), prints discrete achievement levels if they are present in x
- **printCumulative**: a logical value; by default (TRUE), prints cumulative achievement levels if they are present in x
- **...**: these arguments are not passed anywhere and are included only for compatibility

Author(s)

Huade Huo and Ahmad Emad
print.edsurvey.data.frame

EdSurvey Metadata Summary

Description

Prints metadata regarding an edsurvey.data.frame or an edsurvey.data.frame.list

Usage

## S3 method for class 'edsurvey.data.frame'
print(x, printColnames = FALSE, ...)

Arguments

x an edsurvey.data.frame or an edsurvey.data.frame.list
printColnames a logical value; set to TRUE to see all column names in the edsurvey.data.frame or the edsurvey.data.frame.list
...

these arguments are not passed anywhere and are included only for compatibility

Author(s)

Michael Lee and Paul Bailey

print.gap

Gap Analysis Printing

Description

Prints labels and a results vector of a gap analysis.

Usage

## S3 method for class 'gap'
print(x, ..., printPercentage = TRUE)

## S3 method for class 'gapList'
print(x, ..., printPercentage = TRUE)

Arguments

x an R object representing a gap of class gap or gapList
...

these arguments are not passed anywhere and are included only for compatibility
printPercentage a logical value set to TRUE to request printing of the percentage in the groups. Defaults to TRUE.
readBB_2001

Author(s)
Paul Bailey

readBB_2001  Connect to B&B 2000–2001 Data

Description
Opens a connection to a Baccalaureate & Beyond 2000–2001 data file and returns an edsurvey.data.frame with information about the file and data.

Usage
readBB_2001(
  b01DER_Filepath,
  b01WT_FilePath,
  masterTxtfilepath,
  forceReread = FALSE,
  verbose = TRUE
)

Arguments
b01DER_Filepath
  a character value to the main study-derived analytical data file (B01DER.dat). Located within the ECBW/Data Folder.

b01WT_FilePath
  a character value to the study weight data file (B01WT.dat). Located within the ECBW/Data Folder.

masterTxtfilepath
  a character value of the master format file (master.txt) that contains the metadata for the b01DER_Filepath and b01WT_FilePath. Located in the ECBW folder.

forceReread
  a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

verbose
  a logical value that will determine if you want verbose output while the readBB_2001 function is running to indicate processing progress. The default value is TRUE.

Details
Reads the masterTxtFilepath file to parse the b01DER_Filepath and b01WT_FilePath files to an edsurvey.data.frame. This function creates two cached data files will be saved in the same directory and filename as the b01DER_Filepath file for the B&B 2000–2001 longitudinal survey. The two cached data files will have file extensions of .txt and .meta.
readBB_2003

Connect to B&B 1993–2003 Data

Description

Opens a connection to a Baccalaureate & Beyond 1993–2003 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readBB_2003(
  b03DAS_Filepath,
  b03WEIGHT_FilePath,
  masterTxtFilepath,
  forceReread = FALSE,
  verbose = TRUE
)

Value


Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

## Not run:
setwd("C:/B&B2001/ecbw/B01")

dervFP <- file.path(getwd(), "Data", "B01DER.dat")
wgtFP <- file.path(getwd(), "Data", "B01WT.dat")
mstFP <- file.path(getwd(), "master.txt")

# with verbose output as default
bb2001 <- readBB_2001(dervFP, wgtFP, mstFP)

# silent output
bb2001 <- readBB_2001(dervFP, wgtFP, mstFP, verbose=FALSE)

# force cache update
bb2001 <- readBB_2001(dervFP, wgtFP, mstFP, forceReread = TRUE)

## End(Not run)
readBB_2003

Arguments

b03DAS_Filepath
  a character value to the main study-derived analytical data file (B03DAS.dat). Located within the ECBW/Data Folder.

b03WEIGHT_FilePath
  a character value to the study weight data file (B03WEIGHT.dat). Located within the ECBW/Data Folder.

masterTxtFilePath
  a character value of the master format file (master.txt) that contains the metadata for the b03DAS_Filepath and b03WEIGHT_FilePath. Located in the ECBW folder.

forceReread
  a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

verbose
  a logical value that will determine if you want verbose output while the readBB_2003 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the specified masterTxtFilePath file to parse the b03DAS_Filepath and b03WEIGHT_FilePath files for the B&B 1993–2003 longitudinal survey to an edsurvey.data.frame. The two created cached data files will be saved in the same directory and filename as the b03DAS_Filepath file, having new file extensions of .txt and .meta.

Value


Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

## Not run:
setwd("C:/B&B2003/ecbw/B03")

dasFP <- file.path(getwd(), "Data", "B03DAS.dat")
wgtFP <- file.path(getwd(), "Data", "B03WEIGHT.dat")
mstFP <- file.path(getwd(), "master.txt")

# with verbose output as default
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP)

# silent output
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, verbose=FALSE)

# force data cache update
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, forceReread = TRUE)

## End(Not run)

### readBB_2012

Connect to B&B 2008–2012 Data

**Description**

Opens a connection to a Baccalaureate & Beyond 2008–2012 data file and returns an `edsurvey.data.frame` with information about the file and data.

**Usage**

```r
readBB_2012(
 path,
 csvFilename = "b12derived_datafile.csv",
 formatFilename = "b12derived_format.txt",
 metadataFilename = "b12derived_metadata.txt"
)
```

**Arguments**

- `path` a character value to the root directory path containing the `csvFilename`, `formatFilename`, and `metadataFilename` data files.
- `csvFilename` a character value of the derived data file (.csv) containing the raw B&B 2008–2012 data.
- `formatFilename` a character value of the format file (.txt) that describes the layout of the `csvFilename`.
- `metadataFilename` a character value of the metadata file (.txt) that describes additional metadata of the `csvFilename`.

**Details**


**Value**


**Author(s)**

Tom Fink
See Also

`readECLS_K2011`, `readNAEP`, and `getData`

Examples

```r
Not run:
using default filenames
bb <- readBB_2012(path = "C:/BB/2012")
 dim(bb)

parameters specified without default filenames
bb <- readBB_2012(path = getwd(),
 csvFilename = "renamedData.csv",
 formatFilename = "renamedFormat.txt",
 metadataFilename = "renamedMeta.txt")
 dim(bb)

End(Not run)
```

### readBPS_1994

*Beginning Postsecondary Students (BPS:90/94) Data*

**Description**

Opens a connection to a BPS 1990 to 1994 cohort data file and returns an `edsurvey.data.frame` with information about the file and data.

**Usage**

```r
readBPS_1994(
 b94DAT_Filepath,
 masterTxtFilepath,
 forceReread = FALSE,
 verbose = TRUE
)
```

**Arguments**

- **b94DAT_Filepath**
  
a character value of the file path to the student BPS:90/94 (.dat) file

- **masterTxtFilepath**
  
a character value of the file path to the master.txt file contained within the electronic codebook directory

- **forceReread**
  
a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

- **verbose**
  
a logical value that will determine if you want verbose output while the `readHSB_Sophomore` function is running to indicate processing progress. The default value is TRUE.
Details
Reads in the student BPS 1990 to 1994 cohort data file to an edsurvey.data.frame.

Value
An edsurvey.data.frame for the BPS longitudinal dataset.

Author(s)
Sun-joo Lee

See Also
readBB_2001, readNAEP, and getData

Examples
## Not run:
setwd("C:/BPS1994/")

datFP <- file.path(getwd(), "BPS94", "STUDENT.DAT")
mstFP <- file.path(getwd(), "ECBW", "BP4", "MASTER.TXT")

#with verbose output as default
bps94 <- readBPS_1994(datFP, mstFP)

#silent output
bps94 <- readBPS_1994(datFP, mstFP, verbose=FALSE)

#force data cache update
bps94 <- readBPS_1994(datFP, mstFP, forceReread = TRUE)

## End(Not run)
Arguments

path  a character value to the full directory path to the BPS extracted data files

csvFilename  a character value of the derived data file (.csv) containing the raw BPS:96/01 data

formatFilename  a character value of the format file (.txt) that describes the layout of the csvFilename

metadataFilename  a character value of the metadata file (.txt) that describes additional metadata of the csvFilename

Details

Reads in the unzipped derived data files from the BPS longitudinal database of the BPS 1996 to 2001 cohort.

Value

An edsurvey.data.frame for the BPS longitudinal dataset.

Author(s)

Tom Fink

See Also

readBB_2012, readNAEP, and getData

Examples

```r
Not run:
using default filenames
bps01 <- readBPS_2001(path = "C:/BPS/2001")
dim(bps01)

parameters specified without default filenames
bps01 <- readBPS_2001(path = getwd(),
 csvFilename = "renamedData.csv",
 formatFilename = "renamedFormat.txt",
 metadataFilename = "renamedMeta.txt")
dim(bps01)

End(Not run)
```
readBPS_2009  

Beginning Postsecondary Students (BPS:04/09) Data

Description

Opens a connection to a BPS 2004 to 2009 cohort data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readBPS_2009(
  path = getwd(),
  csvFilename = "bps09derived_datafile.csv",
  formatFilename = "bps09derived_format.txt",
  metadataFilename = "bps09derived_metadata.txt"
)

Arguments

path a character value to the full directory path to the BPS extracted data files
csvFilename a character value of the derived data file (.csv) containing the raw BPS:04/09 data
formatFilename a character value of the format file (.txt) that describes the layout of the csvFilename
data
metadataFilename a character value of the metadata file (.txt) that describes additional metadata of the csvFilename

Details

Reads in the unzipped derived data files from the BPS longitudinal database of the BPS 2004 to 2009 cohort.

Value

An edsurvey.data.frame for the BPS longitudinal dataset.

Author(s)

Tom Fink

See Also

readBB_2012, readNAEP, and getData
**readBPS_2014**

*Beginning Postsecondary Students (BPS:12/14) Data*

**Description**

Opens a connection to a BPS 2012 to 2014 cohort data file and returns an `edsurvey.data.frame` with information about the file and data.

**Usage**

```r
readBPS_2014(
 path = getwd(),
 csvFilename = "bps14derived_datafile.csv",
 formatFilename = "bps14derived_format.txt",
 metadataFilename = "bps14derived_metadata.txt"
)
```

**Arguments**

- `path` a character value to the full directory path to the BPS extracted data files
- `csvFilename` a character value of the derived data file (.csv) containing the raw BPS:12/14 data
- `formatFilename` a character value of the format file (.txt) that describes the layout of the csvFilename
- `metadataFilename` a character value of the metadata file (.txt) that describes additional metadata of the csvFilename

**Details**

Reads in the unzipped files downloaded from the BPS 2012 to 2014 cohort longitudinal database.
Value

An edsurvey.data.frame for the BPS longitudinal dataset.

Author(s)

Sun-joo Lee

See Also

readBB_2012, readNAEP, and getData

Examples

```r
Not run:
using default filenames
bps14 <- readBPS_2014(path = "C:/BPS/2012")
dim(bps14)

parameters specified without default filenames
bps14 <- readBPS_2014(path = getwd(),
csvFilename = "renamedData.csv",
formatFilename = "renamedFormat.txt",
metadataFilename = "renamedMeta.txt")
dim(bps14)

End(Not run)
```

readCivEDICCS Connect to ICCS and CivED Data

Description

Opens a connection to an ICCS or CivEd (1999) data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readCivEDICCS(
 path,
countries,
dataSet = c("student", "teacher"),
gradeLvl = c("8", "9", "12"),
forceReread = FALSE,
verbose = TRUE
)
```
Arguments

- **path**: a character value of the full directory to the ICCS/CivED extracted SPSS (.sav) set of data.
- **countries**: a character vector of the country/countries to include using the three-digit International Organization for Standardization (ISO) country code. A list of country codes can be found on Wikipedia at [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes](https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes) or other online sources. Consult the ICCS/CivED User Guide to help determine what countries are included within a specific testing year of ICCS/CivED. To select all countries, use a wildcard value of *.
- **dataSet**: a character value of either student or teacher to indicate which set of data is returned. The student-level and teacher-level datasets cannot both be returned at the same time, unlike other IEA datasets. Note: The CivED 1999 study also included student-to-teacher data for Grade 8. Specifying dataSet="student" and gradeLvl=8 will include both the student and teacher data in the resulting edsurvey.data.frame.
- **gradeLvl**: a character value of the grade level to return:
  - 8 = eighth grade (the default if not specified)
  - 9 = ninth grade
  - 12 = 12th grade (for CivED 1999 only)
- **forceReread**: a logical value to force rereading of all processed data. The default value of FALSE will speed up the readCivEDICCS function by using existing read-in data already processed.
- **verbose**: a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

When using the getData function with a CivED or ICCS study edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If a 1999 CivED Grade 8 edsurvey.data.frame with teacher data variables is requested by the getData call, it will cause teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries, and not all countries contain teacher data.

Calling the dim function for a CivED 1999 Grade 8 edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all data levels.

Value

- an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified.
readECLS_K1998

Author(s)

Tom Fink

See Also

readNAEP, readTIMSS, getData, and downloadCivEDICCS

Examples

## Not run:
eng <- readCivEDICCS("C:/ICCS2009/Gr8", countries = c("eng"),
gradeLvl = 8, dataSet = "student")
gg <- getData(eng, c("famstruc", "totwgts", "civ"))
head(gg)
edsurveyTable(civ ~ famstruc, eng)

## End(Not run)

readECLS_K1998 Connect to ECLS–K 1998 Data

Description

Opens a connection to an ECLS–K 1998 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readECLS_K1998(
  path = getwd(),
  filename = "eclsk_98_99_k8_child_v1_0.dat",
  layoutFilename = "Layout_k8_child.txt",
  forceReread = FALSE,
  verbose = TRUE
)

Arguments

path a character value to the full directory path(s) to the ECLS–K-extracted fixed-width-format (.dat) set of data files
filename a character value of the name of the fixed-width (.dat) data file in the specified path to be read
layoutFilename a character value of the filename of either the ASCII (.txt) layout file of the filename within the specified path or a character value of the filename of the SPSS syntax (.sps) layout file of the filename within the specified path
forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

verbose a logical value that will determine if you want verbose output while the readECLS-K1998 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ECLS–K 1998 longitudinal dataset(s) to an edsurvey.data.frame. The ECLS–K 1998–99 study consisted of three distinct separate datasets that cannot be combined: (1) Child Grades K–8 Data, (2) School Base-Year Data, and (3) Teacher Base-Year Data. The filename and layoutFilename arguments default to the corresponding Child K–8 default filenames.

Value

an edsurvey.data.frame for the ECLS–K 1998 longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, getData, downloadECLS_K

Examples

## Not run:
# read-in student file with defaults
eclsk_df <- readECLS_K1998(path="C:/ECLS_K/1998") #using defaults
d <- getData(eclsk_df, c("childid", "gender", "race"))
summary(d)

# read-in with parameters specified
eclsk_df <- readECLS_K1998(path = "C:/ECLS_K1998",
file = "eclsk_k8_99_k8_child_v1_0.dat",
layoutFilename = "Layout_k8_child.txt",
verbose = TRUE,
forceReread = FALSE)

## End(Not run)
readECLS_K2011

Connect to ECLS–K 2011 Data

Description

Opens a connection to an ECLS–K 2011 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readECLS_K2011(
 path = getwd(),
 filename = "childK4p.dat",
 layoutFilename = "ECLSK2011_K4PUF.sps",
 forceReread = FALSE,
 verbose = TRUE
)
```

Arguments

- **path**: a character value to the full directory path(s) to the ECLS–K 2010–11 extracted fixed-with-format (.dat) set of data files.
- **filename**: a character value of the name of the fixed-width (.dat) data file in the specified path to be read.
- **layoutFilename**: a character value of the filename of either the ASCII (.txt) layout file of the filename within the specified path or a character value of the filename of the SPSS syntax (.sps) layout file of the filename within the specified path.
- **forceReread**: a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.
- **verbose**: a logical value that will determine if you want verbose output while the readECLS--K2011 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ECLS–K 2010–11 longitudinal dataset.

Value

an edsurvey.data.frame for the ECLS–K 2010–11 longitudinal dataset

Author(s)

Tom Fink
See Also

readECLS_K1998, readNAEP, getData, and downloadECLS_K

Examples

```r
Not run:
read-in student file with defaults
eclsk_df <- readECLS_K2011(path="C:/ECLS_K/2011") #using defaults
d <- getData(eclsk_df, c("childid", "c1hgt1", "c1wgt1"))
summary(d)

read-in with parameters specified
eclsk_df <- readECLS_K2011(path = "C:/ECLS_K2011",
filename = "childK4p.dat",
layoutFilename = "ECLSK2011_K4PUF.sps",
forceReread = FALSE,
verbose = TRUE)

End(Not run)
```

---

**readELS**

*Connect to Education Longitudinal Study (ELS:2002) Data*

**Description**

Opens a connection to an ELS data file and returns an edsurvey.data.frame with information about the file and data.

**Usage**

```r
readELS(
 path = getwd(),
 filename = "els_02_12_byf3pststu_v1_0.sav",
 wgtFilename = ifelse(filename == "els_02_12_byf3pststu_v1_0.sav",
 "els_02_12_byf3stubrr_v1_0.sav", NA),
 forceReread = FALSE,
 verbose = TRUE
)
```

**Arguments**

- `path` - a character value to the directory path of the extracted set of data files and layout files.
- `filename` - a character value of the name of the SPSS (.sav) data file in the specified path to be read.
wgtFilename  a character value of the name of the associated balanced repeated replication (BRR) weight SPSS (.sav) data file in the specified path to be read. This argument is applicable only for the student-level data, which contains a separate data file containing the weight replicate information. If using default filenames (recommended), then you shouldn’t need to specify this parameter because it will inspect the filename argument. For data files with no BRR weight file associated, specify a value of NULL or NA.

forceReread  a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

verbose  a logical value that will determine if you want verbose output while the readELS function is running to indicate processing progress. The default value is TRUE.

Details
Reads in the unzipped files downloaded from the ELS longitudinal dataset(s) to an edsurvey.data.frame. The ELS 2002 study consisted of four distinct separate datasets that cannot be combined:

- Student: bas-year through follow-up three (default)
- School: base year through follow-up one
- Institution: follow-up two
- Institution: follow-up three

Value
an edsurvey.data.frame for the ELS longitudinal dataset

Author(s)
Tom Fink

See Also
readECLS_K2011, readNAEP, getData, and downloadECLS_K

Examples
```r
Not run:
read-in student file including weight file as default
setwd("C:/ELS2002")
els_df <- readELS() # student level with weights)
d <- getData(els_df, c("stu_id", "bysex", "bystlang"))
summary(d)

read-in with parameters specified (student level with weights)
els_wgt_df <- readELS(path = "C:/ELS2002",
filename = "els_02_12_byf3pststu_v1_0.dat",
layoutFilename = "Layout_BYF3PSTSTU.PRI.txt",
wgtFilename = "els_02_12_byf3stubrr_v1_0.dat",
```
readHSB_Senior

```r
wgtLayoutFilename = "Layout_BYF3BRPST.PRI.txt",
verbose = TRUE,
forceReread = FALSE)
```

# read-in with parameters specified (school level, no weights)
el_sch_df <- readELS(path = "C:/ELS2002",
filename = "els_02_12_byfsch_v1_0.dat",
layoutFilename = "Layout_BYF1SCH.txt",
wgtFilename = NA,
wgtLayoutFilename = NA,
verbose = TRUE,
forceReread = FALSE)

## End(Not run)

---

**readHSB_Senior**  
*Connect to HS&B Study Senior Data*

**Description**

Opens a connection to a High School & Beyond 1980–1986 Senior cohort data file and returns an `edsurvey.data.frame` with information about the file and data.

**Usage**

```r
readHSB_Senior(
 HSR8086_PRI_FilePath,
 HSR8086_SASSyntax_Path,
 forceReread = FALSE,
 verbose = TRUE
)
```

**Arguments**

- **HSR8086_PRI_FilePath**  
a character value to the main study-derived analytical data file (`HSR8086_REV.PRI`). Located within the `REVISED_ASCII` Folder.

- **HSR8086_SASSyntax_Path**  
a character value to the SAS syntax file for parsing the `HSR8086_REV.PRI` data file. Located within the `SAS_EXTRACT_LOGIC` Folder.

- **forceReread**  
a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

- **verbose**  
a logical value that will determine if you want verbose output while the `readHSB_Senior` function is running to indicate processing progress. The default value is TRUE.
Details
Reads in the specified HSR8086_SASSyntax_Path file to parse the HSR8086_PRI_FilePath file. A cached data file and metadata file will be saved in the same directory and filename as the HSR8086_PRI_FilePath file, having new file extensions of .txt and .meta, respectively.

Please note the original source repcode variable has been split into two variables named repcode_str for the stratum value and repcode_psu for the primary sampling unit (PSU) value in the resulting cache data.

Value
an edsurvey.data.frame for the HS&B Senior 1980–1986 longitudinal dataset

Author(s)
Tom Fink

See Also
readECLS_K2011, readNAEP, and getData

Examples
```r
Not run:
setwd("C:/B&B2003/ebcw/B03")

dasFP <- file.path(getwd(), "Data", "B03DAS.dat")
wgtFP <- file.path(getwd(), "Data", "B03WEIGHT.dat")
mstFP <- file.path(getwd(), "master.txt")

with verbose output as default
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP)

silent output
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, verbose=FALSE)

force data cache update
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, forceReread = TRUE)

End(Not run)
```

Description
Opens a connection to a High School & Beyond 1980–1992 Sophomore cohort data file and returns an edsurvey.data.frame with information about the file and data.
readHSB_Sophomore

Usage

readHSB_Sophomore(
  HSO8092_PRI_FilePath,
  HSO8092_SASSyntax_Path,
  forceReread = FALSE,
  verbose = TRUE
)

Arguments

HSO8092_PRI_FilePath
  a character value to the main study-derived analytical data file (HSO8092_REV.PRI).
  Located within the REVISED_ASCII folder.

HSO8092_SASSyntax_Path
  a character value to the SAS syntax file for parsing the HSO8092_REV.PRI data
  file. Located within the SAS_EXTRACT_LOGIC folder.

forceReread
  a logical value to force rereading of all processed data. The default value of FALSE
  will speed up the read function by using existing read-in data already processed.

verbose
  a logical value that will determine if you want verbose output while the readHSB_Sophomore
  function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the specified HSO8092_SASSyntax_Path file to parse the HSO8092_PRI_FilePath file.
A cached data file and metadata file will be saved in the same directory and filename as the
HSO8092_PRI_FilePath file, having new file extensions of .txt and .meta, respectively.

Please note the original source repcode variable has been split into two variables named repcode_str
for the stratum value and repcode_psu for the primary sampling unit (PSU) value in the resulting
cache data.

Value

an edsurvey.data.frame for the HS&B Sophomore 1980–1992 longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

## Not run:
setwd("C:/B&B2003/ebcw/B03")

dasFP <- file.path(getwd(), "Data", "B03DAS.dat")
wgtFP <- file.path(getwd(), "Data", "B03WEIGHT.dat")
mstFP <- file.path(getwd(), "master.txt")

# with verbose output as default
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP)

# silent output
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, verbose=FALSE)

# force data cache update
bb2003 <- readBB_2003(dasFP, wgtFP, mstFP, forceReread = TRUE)

## End(Not run)

---

readHSLSConnect to High School Longitudinal Study 2009 (HSLS:2009) Data

Description

Opens a connection to an HSLS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readHSLS(
  path = getwd(),
  filename = "hsls_16_student_v1_0.sav",
  wgtFilename = NA,
  forceReread = FALSE,
  verbose = TRUE
)

Arguments

path a character value to the full directory path(s) to the HSLS extracted SPSS (.sav) set of data files
filename a character value of the name of the SPSS (.sav) datafile to be read
wgtFilename a character value of the name of the associated BRR weight SPSS (.sav) data file in the specified path to be read. This argument is only applicable for the restricted-use student level data, which contains a separate data-file containing the weight replicate information. For data files with no balanced repeated replication (BRR) weight file associated, specify a value of NULL or NA.
forceReread a logic value to force a rereading of all processed data. The default value of FALSE speeds up the readHSLS function by using existing read-in data already processed.
verbose a logical value set to TRUE for verbose output that indicates progress
Details

Reads in the unzipped files downloaded from the HSLS longitudinal dataset.

Value

an `edsurvey.data.frame` for the HSLS longitudinal dataset

Note

The SPSS (.sav) format is preferred over the fixed-width-format (.dat) ASCII file format at this time relating to value label issues identified with the ASCII layout specifications.

Author(s)

Tom Fink

See Also

`readECLS_K2011`, `readNAEP`, and `getData`

Examples

```r
Not run:
use function default values at working directory
hsls <- readHSLS("C:/HSLS/2009")

specify parameters with verbose output
hsls <- readHSLS(path="C:/HSLS/2009",
 filename = "hsls_16_student_v1_0.sav",
 forceReread = FALSE,
 verbose = TRUE)

specify parameters silent output
hsls <- readHSLS(path="C:/HSLS/2009",
 filename = "hsls_16_student_v1_0.sav",
 forceReread = FALSE,
 verbose = FALSE)

End(Not run)
```
Usage

readICILS(
  path,
  countries,
  dataSet = c("student", "teacher"),
  forceReread = FALSE,
  verbose = TRUE
)

Arguments

path a character value to the full directory path to the ICILS extracted SPSS (.sav) set of data

countries a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the ICILS User Guide to help determine what countries are included within a specific testing year of ICILS. To select all countries, use a wildcard value of *.

dataSet a character value of either student (the default if not specified) or teacher to indicate which set of data is returned. The student-level and teacher-level datasets cannot both be returned at the same time, unlike other IEA datasets.

forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the readICILS function by using existing read-in data already processed.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ICILS international dataset(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Tom Fink and Jeppe Bundsgaard (updated for 2018)

See Also

readNAEP, readTIMSS, and getData
Examples

```r
Not run:
pol <- readICILS("C:/ICILS/2013", countries = "pol", dataSet = "student")
gg <- getData(pol, c("idstud", "cil", "is1g18b"))
head(gg)
edsurveyTable(cil ~ is1g18b, pol)

End(Not run)
```

readNAEP

Connect to NAEP Data

Description

Opens a connection to an NAEP data file residing on the disk and returns an `edsurvey.data.frame` with information about the file and data.

Usage

```r
readNAEP(
 path,
 defaultWeight = "origwt",
 defaultPvs = "composite",
 omittedLevels = c("Multiple", NA, "Omitted"),
 frPath = NULL
)
```

Arguments

- `path`: a character value indicating the full filepath location and name of the (.dat) data file
- `defaultWeight`: a character value that indicates the default weight specified in the resulting `edsurvey.data.frame`. Default value is `origwt` if not specified.
- `defaultPvs`: a character value that indicates the default plausible value specified in the resulting `edsurvey.data.frame`. Default value is `composite` if not specified.
- `omittedLevels`: a character vector indicating which factor levels/labels should be excluded. When set to the default value of `c("Multiple", NA, 'Omitted')`, adds the vector to the `edsurvey.data.frame`.
- `frPath`: a character value indicating the location of the `fr2` parameter layout file included with the data companion to parse the specified filepath data file

Details

The function uses the `frPath` file layout (.fr2) data to read in the fixed-width data file (.dat) and builds the `edsurvey.data.frame`.
Value

An edsurvey.data.frame containing the following elements:

userConditions  a list containing all user conditions set using the subset.edsurvey.data.frame method
defaultConditions   the default conditions to be applied to the edsurvey.data.frame
data               an LaF object containing a connection to the student dataset on disk
dataSch             an LaF object containing a connection to the school dataset on disk
dataTch             not applicable for NAEP data; returns NULL
weights            a list containing the weights found on the edsurvey.data.frame
pvvar               a list containing the plausible values found on the edsurvey.data.frame
subject             the subject of the dataset contained in the edsurvey.data.frame
year                the year of assessment of the dataset contained in the edsurvey.data.frame
assessmentCode     the code of the dataset contained in the edsurvey.data.frame
dataType            the type of data (whether student or school) contained in the edsurvey.data.frame
gradeLevel          the grade of the dataset contained in the edsurvey.data.frame
achievementLevels   default NAEP achievement cutoff scores
omittedLevels       the levels of the factor variables that will be omitted from the edsurvey.data.frame
fileFormat          a data.frame containing the parsed information from the student .fr2 file associated with the data
fileFormatSchool    a data.frame containing the parsed information from the school .fr2 file associated with the data
fileFormatTeacher   not applicable for NAEP data; returns NULL
survey              the type of survey data contained in the edsurvey.data.frame

Author(s)

Tom Fink and Ahmad Emad

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
sdf

## Not run:
# To read in an NCES file first set the directory to the ~/Data subfolder,
# then read in the appropriate .dat file:
setwd("location/of/Data")
sdf <- readNAEP(path="M36NT2PM.dat")
# Or read in the .dat file directly through the folder pathway:
sdf <- readNAEP(path="location/of/Data/M36NT2PM.dat")

## End(Not run)

readNLS72  

Connect to NLS-72 Study Data

Description

Opens a connection to a National Longitudinal Study of the High School Class of 1972 (NLS-72) cohort data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readNLS72(
  NLS7286_PRI_FilePath,
  NLS7286_SASSyntax_Path,
  forceReread = FALSE,
  verbose = TRUE
)

Arguments

NLS7286_PRI_FilePath
  a character value to the main study derived analytic data file (NLS7286_REV.PRI). Located within the REVISED_ASCII folder.

NLS7286_SASSyntax_Path
  a character value to the SAS syntax file for parsing the NLS7286_REV.PRI data file. Located within the SAS_EXTRACT_LOGIC folder.

forceReread
  a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

verbose
  a logical value that will determine if you want verbose output while the readNLS72 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the specified NLS7286_SASSyntax_Path file to parse the NLS7286_PRI_FilePath file. A cached data file and metadata file will be saved in the same directory and filename as the NLS7286_PRI_FilePath file, having new file extensions of .csv and .meta, respectively.

Value

an edsurvey.data.frame for the National Longitudinal Study of the High School Class of 1972 longitudinal dataset
readPIAAC

Description

Opens a connection to a PIAAC data file and returns an `edsurvey.data.frame` with information about the file and data.

Usage

```r
readPIAAC(path, countries, forceReread = FALSE, verbose = TRUE)
```

Arguments

- `path`: a character value to the full directory path to the PIAAC .csv files and Microsoft Excel codebook
- `countries`: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the PIAAC codebook or https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes. If files are downloaded using `downloadPIAAC`, a country dictionary text file can be found in the filepath. You can use * to indicate all countries available.
- `forceReread`: a logical value to force rereading of all processed data. Defaults to FALSE. Setting `forceReread` to be TRUE will cause PIAAC data to be reread and increase the processing time.
- `verbose`: a logical value that will determine if you want verbose output while the function is running to indicate the progress. Defaults to TRUE.

Details

Reads in the unzipped .csv files downloaded from the PIAAC dataset using the OECD repository (http://www.oecd.org/skills/piaac/). Users can use `downloadPIAAC` to download all required files automatically.

Value

- an `edsurvey.data.frame` for a single specified country or an `edsurvey.data.frame.list` if multiple countries specified
readPIRLS

Connect to PIRLS Data

Description

Opens a connection to a PIRLS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readPIRLS(path, countries, forceReread = FALSE, verbose = TRUE)

Arguments

path a character value to the full directory path to the PIRLS extracted SPSS (.sav) set of data

Examples

## Not run:
# the following call returns an edsurvey.data.frame to PIAAC for Canada
can <- readPIAAC("C:/PIAAC", countries = "can")

# extract a data.frame with a few variables
gg <- getData(can, c("c_d05","agegl01fs"))
head(gg)

# conduct an analysis on the edsurvey.data.frame
edsurveyTable(~ c_d05 + agegl01fs, data = can)

## End(Not run)
countries a character vector of the country/countries to include using the three-digit ISO
country code. A list of country codes can be found on Wikipedia at https://
en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources.
Consult the PIRLS User Guide to help determine what countries are included
within a specific testing year of PIRLS. To select all countries, use a wildcard
value of *.

forceReread a logical value to force rereading of all processed data. The default value of
FALSE will speed up the readPIRLS function by using existing read-in data al-
ready processed.

verbose a logical value to either print or suppress status message output. The default
value is TRUE.

Details

Reads in the unzipped files downloaded from the PIRLS international database(s) using the IEA
Study Data Repository. Data files require the SPSS data file (.sav) format using the default file-
names.

A PIRLS edsurvey.data.frame includes three distinct data levels:

• student
• school
• teacher

When the getData function is called using a PIRLS edsurvey.data.frame, the requested data
variables are inspected, and it handles any necessary data merges automatically. The school data
always will be returned merged to the student data, even if only school variables are requested.
If teacher variables are requested by the getData call, it will cause teacher data to be merged.
Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for a PIRLS edsurvey.data.frame will result in the row
count as if the teacher dataset was merged. This row count will be considered the full data N
of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column
count returned by dim will be the count of unique column variables across all three data levels.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if mul-
tiple countries specified

Author(s)

Tom Fink

See Also

readNAEP, readTIMSS, getData, and downloadPIRLS
## Examples

```r
Not run:
nor <- readPISA("C:/PIRLS2011", countries = c("nor"))
gg <- getData(nor, c("itsex", "totwgt", "rrea"))
head(gg)
edsurveyTable(rrea ~ itsex, nor)
End(Not run)
```

### Description

Opens a connection to a PISA data file and returns an `edsurvey.data.frame` with information about the file and data.

### Usage

```r
readPISA(
 path,
 database = "INT",
 countries,
 cognitive = "score",
 forceReread = FALSE,
 verbose = TRUE
)
```

### Arguments

- **path**
  - a character vector to the full directory path(s) to the PISA-extracted fixed-width files and SPSS control files (.txt).
- **database**
  - a character to indicate a selected database. Must be one of `INT` (general database that most people use), `CBA` (computer-based database in PISA 2012 only), or `FIN` (financial literacy database in PISA 2012 only). Defaults to `INT`.
- **countries**
  - a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the PISA codebook or [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes](https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes). If files are downloaded using `downloadPISA`, a country dictionary text file can be found in the filepath.
- **cognitive**
  - one of none, score, or response. Default is score. The PISA database often has three student files: student questionnaire, cognitive item response, and scored cognitive item response. The first file is used as the main student file with student background information. Users can choose whether to merge score or response data into the main file or not (if none).
forceReread  a logical value to force rereading of all processed data. Defaults to FALSE. Setting forceReread to be TRUE will cause PISA data to be reread and increase processing time.

verbose  a logical value that will determine if you want verbose output while the function is running to indicate progress. Defaults to TRUE.

Details
Reads in the unzipped files downloaded from the PISA database using the OECD Repository (http://www.oecd.org/pisa/). Users can use downloadPISA to download all required files. Student questionnaire files (with weights and plausible values) are used as main files, which are then merged with cognitive, school, and parent files (if available).

The average first-time processing time for 1 year and one database for all countries is 10–15 minutes. If forceReread is set to be FALSE, the next time this function is called will take only 5–10 seconds.

Value
an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries are specified

Author(s)
Tom Fink, Trang Nguyen, and Paul Bailey

References

See Also
getData and downloadPISA

Examples
## Not run:
# the following call returns an edsurvey.data.frame to
# PISA 2012 International Database for Singapore
sgp2012 <- readPISA(path = "C:/PISA/2012", database = "INT", countries = "sgp")

# extract a data.frame with a few variables
gg <- getData(sgp2012, c("cnt","read","w_fstuwt"))
head(gg)

# conduct an analysis on the edsurvey.data.frame
edsurveyTable(read ~ st04q01 + st20q01, data = sgp2012)

## End(Not run)
**readTALIS**

*Connect to TALIS Data*

**Description**

Opens a connection to a TALIS data file and returns an edsurvey.data.frame with information about the file and data.

**Usage**

```r
readTALIS(
 path,
 countries,
 isced = "b",
 dataLevel = "teacher",
 forceReread = FALSE,
 verbose = TRUE
)
```

**Arguments**

- `path`: a character vector to the full directory path(s) to the TALIS SPSS files (.sav)
- `countries`: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the TALIS codebook, or you can use [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes](https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes). You can use `*` to indicate all countries available.
- `isced`: a character value that is one of a, b, or c. a stands for *Primary Level*, b is for *Lower Secondary Level*, and c is for *Upper Secondary Level*. Default to b.
- `dataLevel`: a character value that indicates which data level to be used. It can be *teacher* (the default) or *school*.
- `forceReread`: a logical value to force rereading of all processed data. Defaults to FALSE. Setting `forceReread` to be TRUE will cause PISA data to be reread and increase processing time.
- `verbose`: a logical value that will determine if you want verbose output while the function is running to indicate the progress. Defaults to TRUE.

**Details**

Reads in the unzipped files downloaded from the TALIS database using the OECD Repository ([https://www.oecd.org/education/talis/](https://www.oecd.org/education/talis/)). If `dataLevel` is set to be teacher, it treats the teacher data file as the main dataset and merges school data into teacher data for each country. If `dataLevel` is school, it uses only the school data file. To conduct a school-level analysis with teacher variables, it is recommended that users aggregate teacher-level data first before merging it to school files.
Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Trang Nguyen

References


See Also

ggetData and downloadTALIS

Examples

## Not run:
# the following call returns an edsurvey.data.frame to TALIS 2013
# for US teacher-level data at secondary level
usa2013 <- readTALIS(path = "C:/TALIS/2013", isced = "b",
dataLevel = "teacher", countries = "usa")

# extract a data.frame with a few variables
gg <- getData(usa2013, c("tt2g05b", "tt2g01"))
head(gg)

# conduct an analysis on the edsurvey.data.frame
edsurveyTable(tt2g05b ~ tt2g01, data = usa2013)

## End(Not run)

readTIMSS

Connect to TIMSS Data

Description

Opens a connection to a TIMSS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readTIMSS(path, countries, gradeLvl, forceReread = FALSE, verbose = TRUE)
Arguments

path a character vector to the full directory path(s) to the TIMSS extracted SPSS (.sav) set of data
countries a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the TIMSS User Guide documentation to help determine what countries are included within a specific testing year of TIMSS and for country code definitions. To select all countries available, use a wildcard value of *.
gradeLvl a character value to indicate the specific grade level you wish to return
  • 4 = fourth grade (the default if not specified)
  • 8 = eighth grade
forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the readTIMSS function by using existing read-in data already processed.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the TIMSS international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

A TIMSS edsurvey.data.frame includes three distinct data levels:
  • student
  • school
  • teacher

When the getData function is called using a TIMSS edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call, it will cause teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for a TIMSS edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Beginning with TIMSS 2015, a numeracy dataset was designed to assess mathematics at the end of the primary school cycle for countries where most children are still developing fundamental mathematics skills. The numeracy dataset is handled automatically for the user and is included within the fourth-grade dataset gradeLvl=4. Most numeracy countries have a 4th grade dataset in addition to their numeracy dataset, but some do not. For countries that have both a numeracy and a 4th grade dataset, the two datasets are combined into one edsurvey.data.frame for that country. Data variables missing from either dataset are kept, with NA values inserted for the dataset records where that variable did not exist. Data variables common to both datasets are kept as a single data
variable, with records retaining their original values from the source dataset. Consult the TIMSS User Guide for further information.

**Value**

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

**Author(s)**

Tom Fink

**See Also**

readNAEP, getData, and downloadTIMSS

**Examples**

```r
Not run:
single country specified
fin <- readTIMSS("C:/TIMSS/2015", countries = c("fin"), gradeLvl = 4)
gg <- getData(fin, c("asbg01", "totwgt", "srea"))
head(gg)
edsurveyTable(srea ~ asbg01, fin)

multiple countries returned as edsurvey.data.frame.list, specify all countries with 'x' argument
timss2011 <- readTIMSS("C:/TIMSS/2011", countries="x", gradeLvl = 8, verbose = TRUE)
print out edsurvey.data.frame.list covariates
timss2011$covs

End(Not run)
```

---

**readTIMSSAdv**  
_connect to TIMSS Advanced Data_

**Description**

Opens a connection to a TIMSS Advanced data file and returns an edsurvey.data.frame with information about the file and data.

**Usage**

```r
readTIMSSAdv(
 path,
 countries,
 subject = c("math", "physics"),
 forceReread = FALSE,
 verbose = TRUE
)
```
Arguments

- **path**: a character vector to the full directory path to the TIMSS Advanced extracted SPSS (.sav) set of data.
- **countries**: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes](https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes) or other online sources. Consult the TIMSS Advanced User Guide to help determine what countries are included within a specific testing year of TIMSS Advanced. To select all countries, use a wildcard value of `*`.
- **subject**: a character value to indicate if you wish to import the math or physics dataset. Only one subject can be read in at a time.
- **forceReread**: a logical value to force rereading of all processed data. The default value of `FALSE` will speed up the `readTIMSSAdv` function by using existing read-in data already processed.
- **verbose**: a logical value to either print or suppress status message output. The default value is `TRUE`.

Details

Reads in the unzipped files downloaded from the TIMSS Advanced international database(s) using the IESA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

A TIMSS Advanced edsurvey.data.frame includes three distinct data levels:

- student
- school
- teacher

When the `getData` function is called using a TIMSS Advanced edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the `getData` call it will cause the teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the `dim` function for a TIMSS Advanced edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by `dim` will be the count of unique column variables across all three data levels.

Value

- an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Tom Fink
See Also

readNAEP, readTIMSS, getData, and downloadTIMSSAdv

Examples

```r
Not run:
swe <- readTIMSSAdv("C:/TIMSSAdvanced/Math/2015",
countries = c("swe"), subject = "math")
gg <- getData(swe, c("itsex", "totwgt", "malg"))
head(gg)
edsurveyTable(malg ~ itsex, swe)
End(Not run)
```

---

**read_ePIRLS**

*Connect to ePIRLS Data*

**Description**

Opens a connection to an ePIRLS data file and returns an edsurvey.data.frame with information about the file and data.

**Usage**

```r
read_ePIRLS(path, countries, forceReread = FALSE, verbose = TRUE)
```

**Arguments**

- **path**
  - a character value to the full directory path to the ePIRLS extracted SPSS (.sav) set of data

- **countries**
  - a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes](https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes) or other online sources. Consult the *ePIRLS User Guide* to help determine what countries are included within a specific testing year of ePIRLS. To select all countries, use a wildcard value of ".*

- **forceReread**
  - a logical value to force rereading of all processed data. The default value of FALSE will speed up the `read_ePIRLS` function by using existing read-in data already processed.

- **verbose**
  - a logical value to either print or suppress status message output. The default value is TRUE.
Details

Reads in the unzipped files downloaded from the ePIRLS international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

An ePIRLS edsurvey.data.frame includes three distinct data levels:

- student
- school
- teacher

When the getData function is called using an ePIRLS edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call, it will cause teacher data to be merged. A student can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for an ePIRLS edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries are specified

Author(s)

Tom Fink

See Also

readNAEP, readTIMSS, getData, and download_ePIRLS

Examples

## Not run:
usa <- read_ePIRLS("C:/ePIRLS/2016", countries = c("usa"))
gg <- getData(usa, c("itsex", "totwgt", "erea"))
head(gg)
edsurveyTable(erea ~ itsex, usa)

## End(Not run)
rebindAttributes  Copy Data Frame Attributes

Description

Many R functions strip attributes from data frame objects. This function assigns the attributes from the attributeData argument to the data frame in the data argument.

Usage

rebindAttributes(data, attributeData)

Arguments

data : a data.frame
attributeData : an edsurvey.data.frame or light.edsurvey.data.frame that contains the desired attributes

Value

a data.frame with a class of a light.edsurvey.data.frame containing all elements of data and the attributes (except names and row.names) from attributeData

Author(s)

Paul Bailey and Trang Nguyen

Examples

## Not run:
require(dplyr)
PISA2012 <- readPISA(path = paste0(edsurveyHome, "PISA/2012"), ,
database = "INT",
countries = "ALB", verbose=TRUE)
ledf <- getData(data = PISA2012, varnames = c("cnt", "oecd", "w_fstuwt",
"st62q04", "st62q11",
"st62q13", "math"),
omittedLevels = FALSE, addAttributes = TRUE)

omittedLevels <- c('Invalid', 'N/A', 'Missing', 'Miss', 'NA', 'Missing')
for (i in c("st62q04", "st62q11", "st62q13")) {
  ledf[,i] <- factor(ledf[,i], exclude=omittedLevels)
}

# after applying some dplyr functions, the "light.edsurvey.data.frame" becomes just "data.frame"
PISA2012_ledf <- ledf %>%
  rowwise() %>%
mutate(avg_3 = mean(c(st62q04, st62q11, st62q13), na.rm = TRUE)) %>%
  ungroup() %>%
rebindAttributes(PISA2012) # could also be called with ledf
class(PISA2012_ledf)
# again, a light.edsurvey.data.frame
lma <- lm.sdf(math ~ avg_3, data=PISA2012 Ledf)
summary(lma)

PISA2012 Ledf <- ledf %>%
  rowwise() %>%
  mutate(avg_3 = mean(c(st62q04, st62q11, st62q13), na.rm = TRUE)) %>%
  ungroup() %>%
  rebindAttributes(ledf) # return attributes and make a light.edsurvey.data.frame
# again a light.edsurvey.data.frame
lma <- lm.sdf(math ~ avg_3, data=PISA2012 Ledf)
summary(lma)

## End(Not run)

**recode.sdf**

*Recode Levels Within Variables*

**Description**

Recodes variables in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

**Usage**

recode.sdf(x, recode)

**Arguments**

- **x**
  - an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
- **recode**
  - a list of recoding rules. See Examples for the format of recoding rules.

**Value**

an object of the same class as x with the recode added to it

**Author(s)**

Trang Nguyen and Paul Bailey

**Examples**

```r
Not run:
filepath argument will vary by operating system conventions
usaG4.15 <- readTIMSS(”C:/TIMSS2015”, ”usa”, 4)
d <- getData(usaG4.15, ”itsex”)
summary(d) #show details: MALE/FEMALE
usaG4.15 <- recode.sdf(usaG4.15,
```
renames variables in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list. This function often is used when users want to conduct a gap analysis across years but variable names differ across two years of data.

Usage

rename.sdf(x, oldnames, newnames, avoid_duplicated = TRUE)

Arguments

x an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
oldnames a character vector of old variable names
newnames a character vector of new variable names to replace the corresponding old names
avoid_duplicated

Details

All variable names are coerced to lowercase to comply with the EdSurvey standard.

Value

an object of the same class as x with new variable names

Author(s)

Trang Nguyen

See Also

gap
Examples

```r
Not run:
usaG4.15 <- readTIMSS("C:/TIMSS2015", "usa", 4)
usaG4.15.renamed <- rename.sdf(usaG4.15,
c("itsex", "mmat"),
c("gender", "math_overall"))

lm1 <- lm.sdf(math_overall ~ gender, data = usaG4.15.renamed)
summary(lm1)

End(Not run)
```

---

**rq.sdf**  
*EdSurvey Quantile Regression Models*

**Description**

Fits a quantile regression model that uses weights and variance estimates appropriate for the data.

**Usage**

```r
rq.sdf(
 formula,
 data,
 tau = 0.5,
 weightVar = NULL,
 relevels = list(),
 jrrIMax = 1,
 omittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 returnNumberOfPSU = FALSE,
 ...
)
```

**Arguments**

- `formula` a formula for the quantile regression model. See `rq` in the quantreg package. If `y` is left blank, the default subject scale or subscale variable will be used. (You can find the default using `showPlausibleValues`.) If `y` is a variable for a subject scale or subscale (one of the names shown by `showPlausibleValues`), then that subject scale or subscale is used.
- `data` an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
- `tau` the quantile to be estimated. The value could be set between 0 and 1 with a default of 0.5.
- `weightVar` a character indicating the weight variable to use. The `weightVar` must be one of the weights for the edsurvey.data.frame. If `NULL`, it uses the default for the edsurvey.data.frame.
rllevels a list. Used to change the contrasts from the default treatment contrasts to the
treatment contrasts with a chosen omitted group (the reference group). The
name of each element should be the variable name, and the value should be the
group to be omitted (the reference group).

jrrIMax when using the jackknife variance estimation method, the default estimation op-
tion, jrrIMax=1, uses the sampling variance from the first plausible value as
the component for sampling variance estimation. The $V_{jrr}$ term can be estimated
with any number of plausible values, and values larger than the number
of plausible values on the survey (including Inf) will result in all plausible val-
ues being used. Higher values of jrrIMax lead to longer computing times and
more accurate variance estimates.

omittedLevels a logical value. When set to the default value of TRUE, drops those levels of all
factor variables that are specified in an edsurvey.data.frame. Use print on
an edsurvey.data.frame to see the omitted levels.

defaultConditions a logical value. When set to the default value of TRUE, uses the default condi-
tions stored in an edsurvey.data.frame to subset the data. Use print on an
edsurvey.data.frame to see the default conditions.

recode a list of lists to recode variables. Defaults to NULL. Can be set as recode=list(var1
= list(from= c("a", "b", "c"), to= "d").

returnNumberOfPSU a logical value set to TRUE to return the number of primary sampling units
(PSUs)

... additional parameters passed from rq

Details

The function computes an estimate on the tau-th conditional quantile function of the response,
given the covariates, as specified by the formula argument. Like lm.sdf(), the function presumes
a linear specification for the quantile regression model (i.e., that the formula defines a model that
is linear in parameters). Unlike lm.sdf(), the jackknife is the only applicable variance estimation
method used by the function.

For further details on quantile regression models and how they are implemented in R, see Koenker
and Bassett (1978), Koenker (2005), and the vignette from the quantreg package — accessible by
vignette("rq",package="quantreg") — on which this function is built.

For further details on how left-hand side variables, survey sampling weights, and estimated vari-
ances are correctly handled, see lm.sdf or the vignette titled Statistical Methods Used in EdSurvey.

Value

An edsurvey.rq with the following elements:

call the function call
formula the formula used to fit the model
tau the quantile to be estimated
coeff the estimates of the coefficients
se
Vimp
Vjrr
M
varm
coefm
coefmat
weight
npv
njk

the standard error estimates of the coefficients
the estimated variance from uncertainty in the scores (plausible value variables)
the estimated variance from sampling
the number of plausible values
the variance estimates under the various plausible values
the values of the coefficients under the various plausible values
the coefficient matrix (typically produced by the summary of a model)
the name of the weight variable
the number of plausible values
the number of the jackknife replicates used; set to NA when Taylor series variance estimates are used

Author(s)

Trang Nguyen, Paul Bailey, and Yuqi Liao

References


See Also

rq

Examples

```r
Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

conduct quantile regression at a given tau value (by default, tau is set to be 0.5)
rq1 <- rq.sdf(composite ~ dsex + b017451, data=sdf, tau = 0.8)
summary(rq1)

End(Not run)
```
Description

Calculate the standard deviation of a numeric variable in an edsurvey.data.frame.

Usage

SD(
  data,  
  variable,  
  weightVar = NULL,  
  jrrIMax = 1,  
  varMethod = "jackknife",  
  omittedLevels = TRUE,  
  defaultConditions = TRUE,  
  recode = NULL,  
  targetLevel = NULL,  
  jkSumMultiplier = 1,  
  returnVarEstInputs = FALSE
)

Arguments

data an edsurvey.data.frame, an edsurvey.data.frame.list, or a light.edsurvey.data.frame  
variable character vector of variable names  
weightVar character weight variable name. Default is the default weight of data if it exists. If the given survey data do not have a default weight, the function will produce unweighted statistics instead. Can be set to NULL to return unweighted statistics.  
jrrIMax a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The $V_{jrr}$ term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.  
varMethod deprecated parameter; gap always uses the jackknife variance estimation  
omittedLevels a logical value. When set to TRUE, drops those levels of the specified variable. Use print on an edsurvey.data.frame to see the omitted levels. Defaults to FALSE.  
defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
recode

A list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a", "b", "c"), to = "d")).

targetLevel

A character string. When specified, calculates the gap in the percentage of students at targetLevel in the variable argument, which is useful for comparing the gap in the percentage of students at a survey response level.

jkSumMultiplier

When the jackknife variance estimation method—or balanced repeated replication (BRR) method—multiplies the final jackknife variance estimate by a value, set jkSumMultiplier to that value. For an edsurvey.data.frame, or a light.edsurvey.data.frame, the recommended value can be recovered with EdSurvey::getAttributes(myData, "jkSumMultiplier").

returnVarEstInputs

A logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

Value

SD returns:

- **mean** the mean assessment score for variable, calculated according to the vignette titled *Statistical Methods Used in EdSurvey*
- **std** the standard deviation of the mean
- **stdSE** the standard error of the std
- **sd** the degrees of freedom of the std

When returnVarEstInputs is TRUE, an attribute varEstInputs also is returned that includes the variance estimate inputs used for calculating covariances with varEstToCov.

Author(s)

Paul Bailey and Huade Huo

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# get standard deviation for Male's composite score
SD(data = subset(sdf, dsex == "Male"), variable = "composite")

# get several standard deviations

# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 200:300)
sdfl <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD),
   labels=c("A locations",
            "B locations",
            "C locations",
            "D locations"))

# this shows how these datasets will be described:
sdfl$covs

SD(data = sdfl, variable = "composite")

---

searchSDF  EdSurvey Codebook Search

Description

Retrieves variable names and labels for an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list using character string matching.

Usage

searchSDF(string, data, fileFormat = NULL, levels = FALSE)

Arguments

string  a vector of character strings to search for in the database connection object (data). The function will search the codebook for a matching character string using regular expressions. When a string has several elements, all must be present for a variable to be returned.

data  an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

fileFormat  a character string indicating the data source to search for variables. The default NULL argument searches all codebooks.

levels  a logical value; set to TRUE to return a snapshot of the levels in an edsurvey.data.frame

Value

a data.frame that shows the variable names, labels, and levels (if applicable) from an edsurvey.data.frame or a light.edsurvey.data.frame based on a matching character string

Author(s)

Michael Lee and Paul Bailey
## Examples

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

search both the student and school files by a character string
searchSDF(string="book", data=sdf)

use the `|` (OR) operator to search several strings simultaneously
searchSDF(string="book|home|value", data=sdf)

use a vector of strings to search for variables that contain multiple strings,
such as both "book" and "home"
searchSDF(string=c("book","home"), data=sdf)

search only the student files by a character string
searchSDF(string="algebra", data=sdf, fileFormat="student")

search both the student and school files and return a glimpse of levels
searchSDF(string="value", data=sdf, levels=TRUE)

save the search as an object to return a full data.frame of search
ddf <- searchSDF(string="value", data=sdf, levels=TRUE)
ddf
```

---

### showCodebook

#### Summary Codebook

**Description**

Retrieves variable names, variable labels, and value labels for an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.

#### Usage

```r
showCodebook(
 data,
 fileFormat = NULL,
 labelLevels = FALSE,
 includeRecodes = FALSE
)
```

#### Arguments

- **data**: an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`
- **fileFormat**: a character string indicating the data source to search for variables. The default NULL argument searches all available codebooks in the database connection object.
showCutPoints

Retrieve Achievement Level Cutpoints

Description

Retrieves a summary of the achievement level cutpoints for a selected study represented in an 
edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

labelLevels a logical value; set to TRUE to return a snapshot of the label levels in an edsurvey.data.frame, 
a light.edsurvey.data.frame, or an edsurvey.data.frame.list. When set to FALSE (the default), label levels are removed.

includeRecodes a logical value; set to TRUE to return value labels that have been recoded in an 
edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list. When set to FALSE (the default), only the original value labels are included in 
the returned data.frame.

Value

a data.frame that shows the variable names, variable labels, value labels, value levels (if applicable), and the file format data source from an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M30NT2PM.dat", package="NAEPprimer"))

# search both the student and school files, returning levels for variable values
showCodebook(sdf, c("student","school"), labelLevels = TRUE, includeRecodes = FALSE)

# return codebook information for the student file, excluding variable value levels, 
# including recoded variables
sdf <- recode.sdf(sdf, recode = list(dsex = list(from = c("Male"), to = c("MALE"))))
showCodebook(sdf, c("student"), labelLevels = FALSE, includeRecodes = TRUE)

# return codebook information for the student file, including variable value levels 
# and recoded variables
showCodebook(sdf, c("student","school"), labelLevels = FALSE, includeRecodes = TRUE)

# return codebook information for all codebooks in an edsurvey.data.frame; commonly use View()
## Not run:
View(showCodebook(sdf))

## End(Not run)
showPlausibleValues

Usage

showCutPoints(data)

Arguments

data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# show the cut points
showCutPoints(data=sdf)

showPlausibleValues

<table>
<thead>
<tr>
<th>Plausible Value Variable Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>showPlausibleValues</td>
</tr>
</tbody>
</table>

Description

Prints a summary of the subject scale or subscale and the associated variables for their plausible values for an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

showPlausibleValues(data, verbose = FALSE)

Arguments

data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
verbose a logical value; set to TRUE to get the variable names for plausible values. Otherwise, prints only the subject scale or subscale names for variables that use plausible values.

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# show the plausible values
showPlausibleValues(data=sdf, verbose=TRUE)
showWeights  Retrieve Weight Variables

Description

Prints a summary of the weights in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

showWeights(data, verbose = FALSE)

Arguments

data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

verbose a logical value; set to TRUE to print the complete list of jackknife replicate weights associated with each full sample weight; otherwise, prints only the full sample weights

Author(s)

Michael Lee and Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# show the weights
showWeights(sdf, TRUE)

subset  EdSurvey Subset

Description

Subsets an edsurvey.data.frame, an edsurvey.data.frame.list, or a light.edsurvey.data.frame.

Usage

## S3 method for class 'edsurvey.data.frame'
subset(x, subset, ..., inside = FALSE)
Arguments

- **x**: an `edsurvey.data.frame`, `edsurvey.data.frame.list`, or a `light.edsurvey.data.frame`
- **subset**: a logical expression indicating elements or rows to keep
- **...**: not used; included only for compatibility
- **inside**: set to `TRUE` to prevent the substitute condition from being called on it (see Details)

Details

Any variables defined on condition that are not references to column names on the `edsurvey.data.frame` and are part of the environment where `subset.edsurvey.data.frame` was called will be evaluated in the environment from which `subset.edsurvey.data.frame` was called. Similar to the difficulty of using `subset` within a function call because of the call to substitute on condition, this function is difficult to use (with `inside` set to the default value of `FALSE`) inside another function call. See Examples for how to call this function from within another function.

Value

an object of the same class as `x`

Author(s)
Paul Bailey and Trang Nguyen

References


Examples

```r
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

table to compare to subsequent tables with subsets
edsurveyTable(composite ~ dsex, data=sdf, returnMeans=FALSE, returnSepct=FALSE)

subset to just males
newsdf <- subset(x=sdf, subset= dsex == "Male")
table of dsex after subset
edsurveyTable(composite ~ dsex, data=newsdf, returnMeans=FALSE, returnSepct=FALSE)

Variable names that are not in the sdf get resolved in the parent frame.
practically, that means that the following two subset
calls sdfM1 and sdfM2 do the same thing
male_var <- "Male"
sdfM1 <- subset(x=sdf, subset= dsex == male_var)
sdfM2 <- subset(x=sdf, subset= dsex == "Male")
table(getData(data=sdfM1, varnames="dsex"))
table(getData(data=sdfM2, varnames="dsex"))
```
# variable can also be resolved as members of lists
genders <- c("Male", "Female", "not a sex level")
sdfn <- subset(x=sdf, subset= dsex == genders[2])
table(getData(data=sdfn, varnames="dsex"))

# variables can also be subset using %in%
sdfM3 <- subset(x=sdf, subset= dsex %in% c("Male", "not a sex level"))
table(getData(data=sdfM3, varnames="dsex"))

# if you need to call a name on the sdf dynamically, you can use as.name
dsex_standin <- as.name("dsex")
sdfM4 <- subset(x=sdf, subset= dsex_standin == "Male")
table(getData(data=sdfM4, varnames="dsex"))

# Here is an example of how one might want to call
# subset from within a function or loop.
# First, define a few variables to use dynamically
rhs_vars <- c("dsex", "b017451")
lvls <- c("Male", "Female")

# create a parsed condition
cond <- parse(text=paste0(rhs_vars[1], " == ", lvls[1], "\n"))[[1]]

# when inside=TRUE a parsed condition can be passed to subset
dsdf <- subset(x=sdf, subset=cond, inside=TRUE)

# check the result
table(getData(data=dsdf, varnames="dsex"))

# returns data, but uses substantial memory
## Not run:
head(sdf[c("origwt","m145101")])

# subset an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

# construct an edsurvey.data.frame.list from these four datasets
sdfl <- edsurvey.data.frame.list(list(sdfA, sdfB, sdfC, sdfD),
                                  labels=c("A locations",
                                         "B locations",
                                         "C locations",
                                         "D locations"))

sdfl2 <- subset(sdfl, dsex="Male")
# the number of rows in each element of the sdfl
nrow(sdfl)
# the number of rows after subsetting each element to just the Males
nrow(sdfl2)

## End(Not run)
summarizes `edsurvey.data.frame` variables.

Usage

```r
summary2(
 data,
 variable,
 weightVar = attr(getAttributes(data, "weights"), "default"),
 omittedLevels = FALSE
)
```

Arguments

data | an `edsurvey.data.frame`, an `edsurvey.data.frame.list`, or `light.edsurvey.data.frame`

variable | character vector of variable names

weightVar | character weight variable name. Default is the default weight of `data` if it exists. If the given survey data do not have a default weight, the function will produce unweighted statistics instead. Can be set to `NULL` to return unweighted statistics.

omittedLevels | a logical value. When set to `TRUE`, drops those levels of the specified variable. Use `print` on an `edsurvey.data.frame` to see the omitted levels. Defaults to `FALSE`.

Value

summary of weighted or unweighted statistics of a given variable in an `edsurvey.data.frame`

For categorical variables, the summary results are a crosstab of all variables and include the following:

- `variable name` | level of the variable in the column name that the row regards. There is one column per element of variable.
- `N` | number of cases for each category. Weighted `N` also is produced if users choose to produce weighted statistics.
- `Percent` | percentage of each category. Weighted percent also is produced if users choose to produce weighted statistics.
- `SE` | standard error of the percentage statistics

For continuous variables, the summary results are by variable and include the following:

- `Variable` | name of the variable the row regards
- `N` | total number of cases (both valid and invalid cases)
Min.   smallest value of the variable  
1st Qu. first quantile of the variable  
Median median value of the variable  
Mean   mean of the variable  
3rd Qu. third quantile of the variable  
Max.   largest value of the variable  
SD     standard deviation or weighted standard deviation  
NA's   number of NA in variable and in weight variables  
Zero-weights number of zero-weight cases if users choose to produce weighted statistics

If the weight option is chosen, the function produces weighted percentile and standard deviation. Refer to the vignette titled *Statistical Methods Used in EdSurvey* and the vignette titled *Methods Used for Estimating Percentiles in EdSurvey* for how the function calculates these statistics (with and without plausible values).

**Author(s)**

Paul Bailey and Trang Nguyen

**See Also**

percentile

**Examples**

```r
Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

print out summary of weighted statistics of a continuous variable
summary2(sdf, "composite")

print out summary of weighted statistics of a variable, including omitted levels
summary2(sdf, "b017451", omittedLevels = FALSE)

make a crosstab
summary2(sdf, c("b017451", "dsex"), omittedLevels = FALSE)

print out summary of unweighted statistics of a variable
summary2(sdf, "composite", weightVar = NULL)

End(Not run)
```
updatePlausibleValue  Update Plausible Value Variable Names

Description
Changes the name used to refer to a set of plausible values from oldVar to newVar in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage
updatePlausibleValue(oldVar, newVar, data)

Arguments
oldVar a character value indicating the existing name of the variable
newVar a character value indicating the new name of the variable
data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Value
an object of the same class as the data argument, with the name of the plausible value updated from oldVar to newVar

Author(s)
Michael Lee and Paul Bailey

See Also
getPlausibleValue and showPlausibleValues

Examples
# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# get the PVs before
showPlausibleValues(sdf)
sdf2 <- updatePlausibleValue("composite", "overall", sdf)
showPlausibleValues(sdf2)
lm1 <- lm.sdf(overall ~ b017451, data=sdf2)
summary(lm1)
varEstToCov

Covariance Estimation

Description
When the variance of a derived statistic (e.g., a difference) is required, the covariance between the two statistics must be calculated. This function uses results generated by various functions (e.g., a `lm.sdf`) to find the covariance between two statistics.

Usage

```r
varEstToCov(varEstA, varEstB = varEstA, varA, varB = varA, jkSumMultiplier)
```

Arguments

- `varEstA`:
  a list of two `data.frame`s returned by a function after the `returnVarEstInputs` argument was turned on. The statistic named in the `varA` argument must be present in each `data.frame`.

- `varEstB`:
  a list of two `data.frame`s returned by a function after the `returnVarEstInputs` argument was turned on. The statistic named in the `varA` argument must be present in each `data.frame`. When the same as `varEstA`, the covariance is within one result.

- `varA`:
  a character that names the statistic in the `varEstA` argument for which a covariance is required

- `varB`:
  a character that names the statistic in the `varEstB` argument for which a covariance is required

- `jkSumMultiplier`:
  when the jackknife variance estimation method—or balanced repeated replication (BRR) method—multiplies the final jackknife variance estimate by a value, set `jkSumMultiplier` to that value. For an `edsurvey.data.frame` or a `light.edsurvey.data.frame`, the recommended value can be recovered with `EdSurvey::getAttributes(myData, "jkSumMultiplier")`.

Details

These functions are not vectorized, so `varA` and `varB` must contain exactly one variable name.

The method used to compute the covariance is in the vignette titled *Statistical Methods Used in EdSurvey*.

The method used to compute the degrees of freedom is in the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Degrees of Freedom.”

Value

- a numeric value; the jackknife covariance estimate
waldTest

Author(s)

Paul Bailey

Examples

# read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# estimate a regression
lm1 <- lm.sdf(composite ~ dsex + b017451, sdf, returnVarEstInputs=TRUE)
summary(lm1)
# estimate the covariance between two regression coefficients
# note that the variable names are parallel to what they are called in lm1 output
covFEveryDay <- varEstToCov(lm1$varEstInputs, 
    varA="dsexFemale", varB="b017451Every day",
    jkSumMultiplier=EdSurvey:::getAttributes(sdf, "jkSumMultiplier"))
# the estimated difference between the two coefficients
# note: unname prevents output from being named after the first coefficient
unname(coef(lm1)["dsexFemale"] - coef(lm1)["b017451Every day"])
# the standard error of the difference
# uses the formula SE(A-B) = sqrt(var(A) + var(B) - 2*cov(A,B))
sqrt(lm1$coefmat["dsexFemale", "se"]^2 
+ lm1$coefmat["b017451Every day", "se"]^2 
- 2 * covFEveryDay)

waldTest

Wald Tests

Description

Tests on coefficient(s) of edsurveyGlm and edsurveyLm models.

Usage

waldTest(model, coefficients, H0 = NULL)

Arguments

model an edsurveyGlm and edsurveyLm
coefficients coefficients to be tested, by name or position in coef vector. See Details.
H0 reference values to test coefficients against, default = 0
Details

When plausible values are present, likelihood ratio tests cannot be used. However, the Wald test can be used to test estimated parameters in a model, with the null hypothesis being that a parameter(s) is equal to some value(s). In the default case where the null hypothesis value of the parameters is 0, if the test fails to reject the null hypothesis, removing the variables from the model will not substantially harm the fit of that model. Alternative null hypothesis values also can be specified with the H0 argument. See Examples.

Coefficients to test can be specified by an integer (or integer vector) corresponding to the order of coefficients in the summary output. Coefficients also can be specified using a character vector, to specify coefficient names to test. The name of a factor variable can be used to test all levels of that variable.

This test produces both chi-square and F-tests; their calculation is described in the vignette titled *Methods and Overview of Using EdSurvey for Running Wald Tests*.

Value

An edsurveyWaldTest object with the following elements:

- Sigma: coefficient covariance matrix
- coefficients: indices of the coefficients tested
- H0: null hypothesis values of coefficients tested
- result: result object containing the values of the chi-square and F-tests
- hypoMatrix: hypothesis matrix used for the Wald Test

Author(s)

Alex Lishinski and Paul Bailey

References


Examples

```r
Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

example with glm model
myLogit <- logit.sdf(dsex ~ b017451 + b003501, data = sdf, returnVarEstInputs = T)

single coefficient integer
waldTest(model = myLogit, coefficients = 2)

set of coefficients integer vector
waldTest(model = myLogit, coefficients = 2:5)

specify levels of factor variable to test
waldTest(myLogit, c("b017451Every day", "b017451About once a week"))

specify all levels of factor variable to test
waldTest(myLogit, "b017451")

example with lm model
fit <- lm.sdf(composite ~ dsex + b017451, data = sdf, returnVarEstInputs = T)
waldTest(model = fit, coefficients = "b017451")

examples with alternative (nonzero) null hypothesis values
waldTest(model = myLogit, coefficients = 2, H0 = 0.5)
waldTest(model = myLogit, coefficients = 2:5, H0 = c(0.5, 0.6, 0.7, 0.8))
waldTest(model = myLogit, coefficients = "b017451", H0 = c(0.5, 0.6, 0.7, 0.8))
waldTest(model = myLogit, coefficients = c("b017451Every day", "b017451About once a week"), H0 = c(0.1, 0.2))

End(Not run)
```
Index

$.edsurvey.data.frame (edsurvey.data.frame), 28
$<-.edsurvey.data.frame (edsurvey.data.frame), 28
achievementLevels, 4, 4, 42
append.edsurvey.data.frame.list (edsurvey.data.frame.list), 32
as.data.frame, 8, 8
cbind, 9, 9
cor.sdf, 4, 11
dim.edsurvey.data.frame, 14
DoFCorrection, 15
download_ePIRLS, 27, 113
downloadCivEDICCS, 16, 88
downloadECLS_K, 17, 89, 91, 92
downloadELS, 18
downloadHSLS, 19
downloadICILS, 20
downloadPIAAC, 21, 102, 103
downloadPIRLS, 22, 104
downloadPISA, 23, 105, 106
downloadTALIS, 24, 108
downloadTIMSS, 25, 110
downloadTIMSSAdv, 26, 112
EdSurvey-package, 4
edsurvey.data.frame, 28, 48
edsurvey.data.frame.list, 31, 32
edsurveyTable, 4, 35, 39, 42
edsurveyTable2pdf, 38
gap, 4, 31, 40, 116
getAttributes (edsurvey.data.frame), 28
getPSUVar (edsurvey.data.frame), 28
getStratumVar (edsurvey.data.frame), 28
getWeightJkReplicates, 51
glm (glm.sdf), 52
glm.sdf, 52
hasPlausibleValue, 50, 56
isWeight, 57
levelsSDF, 58
lm (lm.sdf), 59
lm.sdf, 4, 11, 15, 36, 42, 59, 67, 70, 118, 132
logit.sdf, 4
logit.sdf (glm.sdf), 52
merge, 63
mixed.sdf, 4, 64
mvrlm.sdf, 67
oddsRatio, 71
percentile, 4, 42, 72, 130
print.achievementLevels, 75
print.edsurvey.data.frame, 76
print.gap, 76
print.gapList (print.gap), 76
probit.sdf (glm.sdf), 52
rbind, 9
rbind (cbind), 9
read_ePIRLS, 4, 27, 112
readBB_2001, 77, 82
readBB_2003, 78
readBB_2012, 80, 83, 84, 86
readBPS_1994, 81
readBPS_2001, 82
readBPS_2009, 84
readBPS_2014, 85
readCivEDICCS, 4, 17, 86
readECLS_K1998, 18, 88, 91
readECLS_K2011, 4, 18, 78, 79, 81, 89, 90, 92, 94, 95, 97
readELS, 18, 91
readHSB_Senior, 93, 102
readHSB_Sophomore, 94, 102
readHLSLS, 19, 96
readICILS, 4, 20, 97
readNAEP, 4, 35, 78, 79, 81–84, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 104, 110, 112, 113
readNLS72, 101
readPIAAC, 4, 102
readPIRLS, 4, 22, 103
readPISA, 4, 24, 105
readTALIS, 4, 24, 107
readTIMSS, 4, 25, 88, 98, 104, 108, 112, 113
readTIMSSAdv, 4, 26, 110
rebindAttributes, 31, 32, 48, 49, 114
recode.sdf, 12, 115
rename.sdf, 116
rq(rq.sdf), 117
rq.sdf, 4, 117
SD, 120
searchSDF, 122
setAttributes(edsurvey.data.frame), 28
showCodebook, 123
showCutPoints, 124
showPlausibleValues, 5, 35, 51, 59, 65, 117, 125, 131
showWeights, 5, 35, 126
subset, 126
subset.edsurvey.data.frame, 49
summary2, 4, 129
updatePlausibleValue, 51, 131
varEstToCov, 37, 44, 55, 62, 70, 74, 121, 132
waldTest, 55, 62, 133