DRHotNet: Differential Risk Hotspots in a Linear Network

Performs the identification of differential risk hotspots (Briz-Redon et al. 2019) <doi:10.1016/j.aap.2019.105278> along a linear network. Given a marked point pattern lying on the linear network, the method implemented uses a network-constrained version of kernel density estimation (McSwiggan et al. 2017) <doi:10.1111/sjos.12255> to approximate the probability of occurrence across space for the type of event specified by the user through the marks of the pattern (Kelsall and Diggle 1995) <doi:10.2307/3318678>. The goal is to detect microzones of the linear network where the type of event indicated by the user is overrepresented.

Version: 1.2
Depends: R (≥ 3.5.0)
Imports: graphics, grDevices, maptools, PBSmapping, raster, sp, spatstat, spdep, stats, utils
Suggests: knitr, rmarkdown
Published: 2020-05-13
Author: Alvaro Briz-Redon
Maintainer: Alvaro Briz-Redon <alvaro.briz at uv.es>
License: GPL-2
NeedsCompilation: no
CRAN checks: DRHotNet results


Reference manual: DRHotNet.pdf
Package source: DRHotNet_1.2.tar.gz
Windows binaries: r-devel: DRHotNet_1.2.zip, r-release: DRHotNet_1.2.zip, r-oldrel: DRHotNet_1.2.zip
macOS binaries: r-release: DRHotNet_1.2.tgz, r-oldrel: DRHotNet_1.2.tgz
Old sources: DRHotNet archive


Please use the canonical form https://CRAN.R-project.org/package=DRHotNet to link to this page.