R topics documented:

ChainLadder-package ... 3
ABC .. 4
ata .. 5
auto .. 6
BootChainLadder .. 7
CDR .. 9
chainladder ... 10
ClarkCapeCod .. 13
ClarkLDF .. 17
CLFMdelta ... 20
coef.ChainLadder .. 22
Cumulative and incremental triangles 23
GenIns ... 24
getLatestCumulative .. 25
glmReserve .. 26
Join2Fits .. 29
JoinFitMse .. 30
liab .. 31
LRfunction ... 31
M3IR5 ... 32
MackChainLadder .. 33
MCLpaid ... 37
Mortgage .. 38
Mse-methods ... 38
MultiChainLadder ... 40
MultiChainLadder-class 46
MultiChainLadderFit-class 48
MultiChainLadderMse-class 49
MultiChainLadderSummary-class 50
MunichChainLadder .. 52
MW2008 ... 54
MW2014 ... 55
NullNum-class ... 55
plot-MultiChainLadder ... 56
plot.BootChainLadder .. 57
plot.clark .. 58
plot.MackChainLadder ... 59
plot.MunichChainLadder 60
predict.TriangleModel .. 61
print.ata ... 62
print.clark ... 63
qpaid ... 65
RAA .. 66
residCov ... 66
residuals.MackChainLadder 67
summary-methods ... 68
Description

ChainLadder provides methods and models which are typically used in insurance claims reserving.

More information is available on the project web site http://code.google.com/p/chainladder/

For more financial packages see also CRAN Task View 'Emperical Finance' at http://cran.r-project.org/web/views/Finance.html.

Author(s)

Markus Gesmann, Wayne Zhang, Daniel Murphy, Alessandro Carrato

Maintainer: Markus Gesmann <markus.gesmann@gmail.com>

References

Examples

```r
## Not run:
demo(ChainLadder)

## End(Not run)
```

ABC

Run off triangle of accumulated claims data

Description

Run-off triangle of a worker’s compensation portfolio of a large company

Usage

```r
data(ABC)
```

Format

A matrix with 11 accident years and 11 development years.

Source

Examples

```r
ABC
pplot(ABC)
pplot(ABC, lattice=TRUE)
```
Description

Calculate the matrix of age-to-age factors (also called "report-to-report" factors, or "link ratios") for an object of class `triangle`.

Usage

```r
ata(Triangle, NArow.rm = TRUE, colname.sep = "\"", colname.order=c("ascending","descending"))
```

Arguments

- `Triangle`: a loss "triangle". Must be a matrix.
- `NArow.rm`: logical indicating if rows of age-to-age (ata) factors that are all NA should be removed. "All-NA" rows typically occur for the most recent origin year of a loss triangle.
- `colname.sep`: a character indicating the separator character to place between the column names of `Triangle` that will be used to label the columns of the resulting matrix of ata factors
- `colname.order`: "ascending" indicates that the less mature age comes first in the column labels of the ata matrix

Details

`ata` constructs a matrix of age-to-age (ata) factors resulting from a loss "triangle" or a matrix. Simple averages and volume weighted averages are saved as "smpl" and "vwtd" attributes, respectively.

Value

A matrix with "smpl" and "vwtd" attributes.

Author(s)

Daniel Murphy

See Also

`summary.ata`, `print.ata` and `chainladder`
Examples

ata(GenIns)

Volume weighted average age-to-age factor of the "RAA" data
y <- attr(ata(RAA), "vwtd")
y
"To ultimate" factors with a 10% tail
y <- rev(cumprod(rev(c(y, 1.1)))))
names(y) <- paste(colnames(RAA), "ult", sep="-")
y
Label the development columns in "ratio-type" format
ata(RAA, colname.sep=":", colname.order="desc")

auto Run off triangle of accumulated claim data

Description

Run-off triangles of Personal Auto and Commercial Auto insurance.

Usage

data(auto)

Format

A list of three matrices, paid Personal Auto, incurred Personal Auto and paid Commercial Auto respectively.

Source

Examples

data(auto)
names(auto)
Description

The **BootChainLadder** procedure provides a predictive distribution of reserves or IBNRs for a cumulative claims development triangle.

Usage

```r
BootChainLadder(Triangle, R = 999, process.distr=c("gamma", "od.pois"))
```

Arguments

- `Triangle`: cumulative claims triangle. Assume columns are the development period, use transpose otherwise. A (mxn)-matrix C_{ik} which is filled for $k \leq n + 1 - i; i = 1, \ldots, m; m \geq n$. See `qpaid` for how to use (mxn)-development triangles with m<n, say higher development period frequency (e.g quarterly) than origin period frequency (e.g accident years).
- `R`: the number of bootstrap replicates.
- `process.distr`: character string indicating which process distribution to be assumed. One of "gamma" (default), or "od.pois" (over-dispersed Poisson), can be abbreviated

Details

The **BootChainLadder** function uses a two-stage bootstrapping/simulation approach. In the first stage an ordinary chain-ladder methods is applied to the cumulative claims triangle. From this we calculate the scaled Pearson residuals which we bootstrap R times to forecast future incremental claims payments via the standard chain-ladder method. In the second stage we simulate the process error with the bootstrap value as the mean and using the process distribution assumed. The set of reserves obtained in this way forms the predictive distribution, from which summary statistics such as mean, prediction error or quantiles can be derived.

Value

`BootChainLadder` gives a list with the following elements back:

- `call`: matched call
- `Triangle`: input triangle
- `f`: chain-ladder factors
- `simClaims`: array of dimension c(m,n,R) with the simulated claims
- `IBNR.ByOrigin`: array of dimension c(m,1,R) with the modeled IBNRs by origin period
- `IBNR.Triangles`: array of dimension c(m,n,R) with the modeled IBNR development triangles
- `IBNR.Totals`: vector of R samples of the total IBNRs
BootChainLadder

ChainLadder.Residuals
 adjusted Pearson chain-ladder residuals
process.distr assumed process distribution
R the number of bootstrap replicates

Note
The implementation of BootChainLadder follows closely the discussion of the bootstrap model in section 8 and appendix 3 of the paper by England and Verrall (2002).

Author(s)
Markus Gesmann, <markus.gesmann@gmail.com>

References
England, PD and Verrall, RJ. Stochastic Claims Reserving in General Insurance (with discussion), British Actuarial Journal 8, III. 2002
Barnett and Zehnwirth. The need for diagnostic assessment of bootstrap predictive models, Insureware technical report. 2007

See Also
See also summary.BootChainLadder, plot.BootChainLadder displaying results and finally CDR.BootChainLadder for the one year claims development result.

Examples
See also the example in section 8 of England & Verrall (2002) on page 55.

B <- BootChainLadder(RAA, R=999, process.distr="gamma")
plot(B)
Compare to MackChainLadder
MackChainLadder(RAA)
quantile(B, c(0.75, 0.95, 0.99, 0.995))

fit a distribution to the IBNR
library(MASS)
plot(ecdf(B$IBNR.Totals))
fit a log-normal distribution
fit <- fitdistr(B$IBNR.Totals[B$IBNR.Totals>0], "lognormal")
fit
curve(plnorm(x, fit$estimate["meanlog"], fit$estimate["sdlog"]), col="red", add=TRUE)

See also the ABC example in Barnett and Zehnwirth (2007)
A <- BootChainLadder(ABC, R=999, process.distr="gamma")
plot(A, log=TRUE)

One year claims development result
Description

Standard deviation of the claims development result after one year for the distribution-free chain-ladder model (Mack) and Bootstrap model.

Usage

```r
cdr(x, ...,)
## S3 method for class 'MackChainLadder'
cdr(x, dev=1, ...)
## S3 method for class 'BootChainLadder'
cdr(x, probs=c(0.75, 0.95), ...)
## Default S3 method:
cdr(x, ...)
```

Arguments

- `x` output of either `MackChainLadder` or `BootChainLadder`
- `dev` vector of development periods or "all". Currently only applicable for `MackChainLadder` output. Defines the years for which the run off claims development result should be returned.
- `probs` only applicable for `BootChainLadder` output. Define quantiles to be returned.
- `...` other arguments

Details

Merz & Wüthrich (2008) derived analytic formulae for the mean square error of prediction of the claims development result for the Mack chain-ladder model after one year assuming:

- The opening reserves were set using the pure chain-ladder model (no tail)
- Claims develop in the year according to the assumptions underlying Mack’s model
- Reserves are set after one year using the pure chain-ladder model (no tail)

Value

A `data.frame` with various IBNR/reserves and one-year statistics of the claims development result.

Note

Tail factors are currently not supported.
chainladder

Estimate age-to-age factors

Description

Basic chain ladder function to estimate age-to-age factors for a given cumulative run-off triangle. This function is used by Mack- and MunichChainLadder.

Usage

chainladder(Triangle, weights = 1, delta = 1)
Arguments

Triangle

Cumulative claims triangle. A (mxn)-matrix \(C_{ik} \) which is filled for \(k \leq n + 1 - i \); \(i = 1, \ldots, m; m \geq n \), see `qpaid` for how to use (mxn)-development triangles with \(m < n \), say higher development period frequency (e.g. quarterly) than origin period frequency (e.g. accident years).

Weights

Weights. Default: 1, which sets the weights for all triangle entries to 1. Otherwise specify weights as a matrix of the same dimension as `Triangle` with all weight entries in \([0; 1]\)

Delta

'Weighting' parameters, either 0, 1 or 2. Default: 1; `delta`=1 gives the historical chain ladder age-to-age factors, `delta`=2 gives the straight average of the observed individual development factors and `delta`=0 is the result of an ordinary regression of \(C_{i,k+1} \) against \(C_{i,k} \) with intercept 0, see Barnett & Zehnwirth (2000);. Please note that Mack (1999) used the notation of alphas, with alpha=2-delta.

Details

The key idea is to see the chain ladder algorithm as a weighted linear regression through the origin applied to each development period.

Suppose \(y \) is the vector of cumulative claims at development period \(i+1 \), and \(x \) at development period \(i \), \(w \) are weighting factors and \(F \) the individual age-to-age factors \(F = y/x \), then we get the various age-to-age factors for different deltas (alphas) as:

\[
\text{sum}(w \times x \times \text{alpha} \times F) / \text{sum}(w \times x \times \text{alpha}) \quad \text{# Mack (1999) notation}
\]

\[
delta \leftarrow 2 - \text{alpha}
\]

\[
\text{lm}(y - x + 0, \text{weights}=w / x \times \text{delta}) \quad \text{# Barnett & Zehnwirth (2000) notation}
\]

Value

chainladder returns a list with the following elements:

Models

Linear regression models for each development period

Triangle

Input triangle of cumulative claims

Weights

Weights used

Delta

Deltas used

Author(s)

Markus Gesmann <markus.gesmann@gmail.com>

References

See Also

See also \texttt{ata}, \texttt{predict.ChainLadder} \texttt{MackChainLadder}.

Examples

```r
## Concept of different chain ladder age-to-age factors.
## Compare Mack's and Barnett & Zehnwirth's papers.
x <- RAA[1:9,1]
y <- RAA[1:9,2]

weights <- RAA
weights[is.na(weights)] <- 1
w <- weights[1:9,1]

F <- y/x
## wtd. average chain ladder age-to-age factors
alpha <- 1
delta <- 2-alpha

sum(w*x^alpha*F)/sum(w*x^alpha)
lm(y~x + 0, weights=w/x^alpha)
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]])$coef

## straight average age-to-age factors
alpha <- 0
delta <- 2-alpha

sum(w*x^alpha*F)/sum(w*x^alpha)
lm(y~x + 0, weights=w/x^(2-alpha))
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]])$coef

## ordinary regression age-to-age factors
alpha=2
delta <- 2-alpha

sum(w*x^alpha*F)/sum(w*x^alpha)
lm(y~x + 0, weights=w/x^delta)
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]])$coef

## Change weights

weights[2,1] <- 0.5
w <- weights[1:9,1]

## wtd. average chain ladder age-to-age factors
alpha <- 1
delta <- 2-alpha

sum(w*x^alpha*F)/sum(w*x^alpha)
lm(y~x + 0, weights=w/x^delta)
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]])$coef

## straight average age-to-age factors
alpha <- 0
```
ClarkCapeCod

Clark Cape Cod method

Description

Analyze loss triangle using Clark's Cape Cod method.

delta <- 2 - alpha
sum(w*x*alphaF)/sum(w*x*alpha)
lm(y-x + 0 ,weights=w/x^(2-alpha))
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]]$coef

ordinary regression age-to-age factors
alpha=2
delta <- 2-alpha
sum(w*x*alphaF)/sum(w*x*alpha)
lm(y-x + 0 ,weights=w/x*delta)
summary(chainladder(RAA, weights=weights, delta=delta)$Models[[1]]$coef

Model review
CL0 <- chainladder(RAA, weights=weights, delta=0)
age-to-age factors
sapply(CL0$Models, function(x) summary(x)$coefficients
f.se
sapply(CL0$Models, function(x) summary(x)$coefficients Std. Error)
sigma
sapply(CL0$Models, function(x) summary(x)$sigma)

CL1 <- chainladder(RAA, weights=weights, delta=1)
age-to-age factors
sapply(CL1$Models, function(x) summary(x)$coefficients
f.se
sapply(CL1$Models, function(x) summary(x)$coefficients Std. Error)
sigma
sapply(CL1$Models, function(x) summary(x)$sigma)

CL2 <- chainladder(RAA, weights=weights, delta=2)
age-to-age factors
sapply(CL2$Models, function(x) summary(x)$coefficients
f.se
sapply(CL2$Models, function(x) summary(x)$coefficients Std. Error)
sigma
sapply(CL2$Models, function(x) summary(x)$sigma)

Forecasting
predict(CL0)
predict(CL1)
predict(CL2)
Usage

ClarkCapeCod(Triangle, Premium, cumulative = TRUE, maxage = Inf,
adol = TRUE, adol.age = NULL, origin.width = NULL,
G = "loglogistic")

Arguments

Triangle A loss triangle in the form of a matrix. The number of columns must be at least four; the number of rows may be as few as 1. The column names of the matrix should be able to be interpreted as the "age" of the losses in that column. The row names of the matrix should uniquely define the year of origin of the losses in that row. Losses may be inception-to-date or incremental.

Premium The vector of premium to use in the method. If a scalar (vector of length 1) is given, that value will be used for all origin periods. (See "Examples" below.) If the length is greater than 1 but does not equal the number of rows of Triangle the Premium values will be "recycled" with a warning.

cumulative If TRUE (the default), values in Triangle are inception to date. If FALSE, Triangle holds incremental losses.

maxage The "ultimate" age to which losses should be projected.

adol If TRUE (the default), the growth function should be applied to the length of time from the average date of loss ("adol") of losses in the origin year. If FALSE, the growth function should be applied to the length of time since the beginning of the origin year.

adol.age Only pertinent if adol is TRUE. The age of the average date of losses within an origin period in the same units as the "ages" of the Triangle matrix. If NULL (the default) it will be assumed to be half the width of an origin period (which would be the case if losses can be assumed to occur uniformly over an origin period).

origin.width Only pertinent if adol is TRUE. The width of an origin period in the same units as the "ages" of the Triangle matrix. If NULL (the default) it will be assumed to be the mean difference in the "ages" of the triangle, with a warning if not all differences are equal.

G A character scalar identifying the "growth function." The two growth functions defined at this time are "loglogistic" (the default) and "weibull".

Details

Clark’s "Cape Cod" method assumes that the incremental losses across development periods in a loss triangle are independent. He assumes that the expected value of an incremental loss is equal to the theoretical expected loss ratio (ELR) times the on-level premium for the origin year times the change in the theoretical underlying growth function over the development period. Clark models the growth function, also called the percent of ultimate, by either the loglogistic function (a.k.a., "the inverse power curve") or the weibull function. Clark completes his incremental loss model by wrapping the expected values within an overdispersed poisson (ODP) process where the "scale factor" sigma^2 is assumed to be a known constant for all development periods.
The parameters of Clark's "Cape Cod" method are therefore: ELR, and omega and theta (the parameters of the loglogistic and weibull growth functions). Finally, Clark uses maximum likelihood to parameterize his model, uses the ODP process to estimate process risk, and uses the Cramer-Rao theorem and the "delta method" to estimate parameter risk.

Clark recommends inspecting the residuals to help assess the reasonableness of the model relative to the actual data (see plot.clark below).

Value

A list of class "ClarkLDF" with the components listed below. ("Key" to naming convention: all caps represent parameters; mixed case represent origin-level amounts; all-lower-case represent observation-level (origin, development age) results.)

- **method**: "CapeCod"
- **growthFunction**: name of the growth function
- **Origin**: names of the rows of the triangle
- **Premium**: Premium amount for each origin year
- **CurrentValue**: the most mature value for each row
- **CurrentAge**: the most mature "age" for each row
- **CurrentAge.used**: the most mature age used; differs from "CurrentAge" when adol=TRUE
- **MAXAGE**: same as 'maxage' argument
- **MAXAGE.USED**: the maximum age for development from the average date of loss; differs from MAXAGE when adol=TRUE
- **FutureValue**: the projected loss amounts ("Reserves" in Clark's paper)
- **ProcessSE**: the process standard error of the FutureValue
- **ParameterSE**: the parameter standard error of the FutureValue
- **StdError**: the total standard error (process + parameter) of the FutureValue
- **Total**: a list with amounts that appear on the "Total" row for components "Origin" (="Total"), "CurrentValue", "FutureValue", "ProcessSE", "ParameterSE", and "StdError"
- **PAR**: the estimated parameters
- **ELR**: the estimated loss ratio parameter
- **THETAG**: the estimated parameters of the growth function
- **GrowthFunction**: value of the growth function as of the CurrentAge.used
- **GrowthFunctionMAXAGE**: value of the growth function as of the MAXAGE.Used
- **FutureGrowthFactor**: the ("unreported" or "unpaid") percent of ultimate loss that has yet to be recorded
- **SIGMA2**: the estimate of the sigma^2 parameter
- **Ldf**: the "to-ultimate" loss development factor (sometimes called the "cumulative development factor") as defined in Clark's paper for each origin year
LdfMAXAGE the "to-ultimate" loss development factor as of the maximum age used in the model
TruncatedLdf the "truncated" loss development factor for developing the current diagonal to the maximum age used in the model
FutureValueGradient the gradient of the FutureValue function
origin the origin year corresponding to each observed value of incremental loss
age the age of each observed value of incremental loss
fitted the expected value of each observed value of incremental loss (the "mu’s" of Clark’s paper)
residuals the actual minus fitted value for each observed incremental loss
stdresid the standardized residuals for each observed incremental loss (= residuals/sqrt(sigma^2*fitted), referred to as "normalized residuals" in Clark’s paper; see p. 62)
FI the "Fisher Information" matrix as defined in Clark’s paper (i.e., without the sigma^2 value)
value the value of the loglikelihood function at the solution point
counts the number of calls to the loglikelihood function and its gradient function when numerical convergence was achieved

Author(s)
Daniel Murphy

References

See Also
ClarkLDF

Examples

X <- GenIns
colnames(X) <- 12*as.numeric(colnames(X))
CC.loglogistic <- ClarkCapeCod(X, Premium=10000000+4000000*0.9, maxage=240)
CC.loglogistic

Clark's "CapeCod method" also works with triangles that have
more development periods than origin periods. The Premium
is a contrived match to the "made up" 'qincurred' Triangle.
ClarkCapeCod(qincurred, Premium=1250+150*0:11, G="loglogistic")

Method also works for a "triangle" with only one row:
1st row of GenIns; need "drop=FALSE" to avoid becoming a vector.
ClarkLDF

ClarkCapeCod(GenIns[1, , drop=FALSE], Premium=1000000, maxage=20)

If one value of Premium is appropriate for all origin years
(e.g., losses are on-level and adjusted for exposure)
then only a single value for Premium need be provided.
ClarkCapeCod(GenIns, Premium=1000000, maxage=20)

Use of the weibull function generates a warning that the parameter risk
approximation results in some negative variances. This may be of small
concern since it happens only for older years with near-zero
estimated reserves, but the warning should not be disregarded
if it occurs with real data.
Y <- ClarkCapeCod(qincurred, Premium=1250+150*x0:11, G="weibull")

The plot of the standardized residuals by age indicates that the more
mature observations are more loosely grouped than the less mature, just
the opposite of the behavior under the loglogistic curve.
This suggests that the model might be improved by analyzing the Triangle
in two different "blocks": less mature vs. more mature.
The QQ-plot shows that the tails of the empirical distribution of
standardized residuals are "fatter" than a standard normal.
The fact that the p-value is essentially zero says that there is
virtually no chance that the standardized residuals could be
considered draws from a standard normal random variable.
The overall conclusion is that Clark's ODP-based CapeCod model with
the weibull growth function does not match up well with the qincurred
triangle and these premiums.
plot(Y)

ClarkLDF

Clark LDF method

Description

Analyze loss triangle using Clark's LDF (loss development factor) method.

Usage

ClarkLDF(Triangle, cumulative = TRUE, maxage = Inf,
 adol = TRUE, adol.age = NULL, origin.width = NULL,
 G = "loglogistic")

Arguments

Triangle A loss triangle in the form of a matrix. The number of columns must be at least
four; the number of rows may be as few as 1. The column names of the matrix should be able to be interpreted as the "age" of the losses in that column. The row names of the matrix should uniquely define the year of origin of the losses in that row. Losses may be inception-to-date or incremental.
The "ages" of the triangle can be "phase shifted" – i.e., the first age need not be as at the end of the origin period. (See the Examples section.) Nor need the "ages" be uniformly spaced. However, when the ages are not uniformly spaced, it would be prudent to specify the origin.width argument.

cumulative
If TRUE (the default), values in Triangle are inception to date. If FALSE, Triangle holds incremental losses.

maxage
The "ultimate" age to which losses should be projected.

adol
If TRUE (the default), the growth function should be applied to the length of time from the average date of loss ("adol") of losses in the origin year. If FALSE, the growth function should be applied to the length of time since the beginning of the origin year.

adol.age
Only pertinent if adol is TRUE. The age of the average date of losses within an origin period in the same units as the "ages" of the Triangle matrix. If NULL (the default), it will be assumed to be half the width of an origin period (which would be the case if losses can be assumed to occur uniformly over an origin period).

origin.width
Only pertinent if adol is TRUE. The width of an origin period in the same units as the "ages" of the Triangle matrix. If NULL (the default), it will be assumed to be the mean difference in the "ages" of the triangle, with a warning if not all differences are equal.

G
A character scalar identifying the "growth function." The two growth functions defined at this time are "loglogistic" (the default) and "weibull".

Details
Clark's "LDF method" assumes that the incremental losses across development periods in a loss triangle are independent. He assumes that the expected value of an incremental loss is equal to the theoretical expected ultimate loss (U) (by origin year) times the change in the theoretical underlying growth function over the development period. Clark models the growth function, also called the percent of ultimate, by either the loglogistic function (a.k.a., "the inverse power curve") or the weibull function. Clark completes his incremental loss model by wrapping the expected values within an overdispersed poisson (ODP) process where the "scale factor" sigma^2 is assumed to be a known constant for all development periods.

The parameters of Clark's "LDF method" are therefore: U, and omega and theta (the parameters of the loglogistic and weibull growth functions). Finally, Clark uses maximum likelihood to parameterize his model, uses the ODP process to estimate process risk, and uses the Cramer-Rao theorem and the "delta method" to estimate parameter risk.

Clark recommends inspecting the residuals to help assess the reasonableness of the model relative to the actual data (see plot.clark below).

Value
A list of class "ClarkLDF" with the components listed below. ("Key" to naming convention: all caps represent parameters; mixed case represent origin-level amounts; all-lower-case represent observation-level (origin, development age) results.)

method
"LDF"
growthFunction name of the growth function
Origin names of the rows of the triangle
CurrentValue the most mature value for each row
CurrentAge the most mature "age" for each row
CurrentAge.used the most mature age used; differs from "CurrentAge" when adol=TRUE
MAXAGE same as 'maxage' argument
MAXAGE.USED the maximum age for development from the average date of loss; differs from MAXAGE when adol=TRUE
FutureValue the projected loss amounts ("Reserves" in Clark’s paper)
ProcessSE the process standard error of the FutureValue
ParameterSE the parameter standard error of the FutureValue
StdError the total standard error (process + parameter) of the FutureValue
Total a list with amounts that appear on the "Total" row for components "Origin" (="Total"), "CurrentValue", "FutureValue", "ProcessSE", "ParameterSE", and "StdError"
PAR the estimated parameters
THETAU the estimated parameters for the "ultimate loss" by origin year ("U" in Clark’s notation)
THETAG the estimated parameters of the growth function
GrowthFunction value of the growth function as of the CurrentAge.used
GrowthFunctionMAXAGE value of the growth function as of the MAXAGE.used
SIGMA2 the estimate of the sigma^2 parameter
Ldf the "to-ultimate" loss development factor (sometimes called the "cumulative development factor") as defined in Clark’s paper for each origin year
LdfMAXAGE the "to-ultimate" loss development factor as of the maximum age used in the model
TruncatedLdf the "truncated" loss development factor for developing the current diagonal to the maximum age used in the model
FutureValueGradient the gradient of the FutureValue function
origin the origin year corresponding to each observed value of incremental loss
age the age of each observed value of incremental loss
fitted the expected value of each observed value of incremental loss (the "mu's" of Clark’s paper)
residuals the actual minus fitted value for each observed incremental loss
stdresid the standardized residuals for each observed incremental loss (= residuals/sqrt(sigma2*fitted), referred to as "normalized residuals" in Clark’s paper; see p. 62)
FI the "Fisher Information" matrix as defined in Clark’s paper (i.e., without the sigma^2 value)
value the value of the loglikelihood function at the solution point
counts the number of calls to the loglikelihood function and its gradient function when numerical convergence was achieved
Author(s)
Daniel Murphy

References

See Also
ClarkCapeCod

Examples

```r
X <- GenIns
clarkLDF(X, maxage=20)

# Clark's "LDF method" also works with triangles that have
# more development periods than origin periods
clarkLDF(qincurred, G="loglogistic")

# Method also works for a "triangle" with only one row:
# 1st row of GenIns; need "drop=FALSE" to avoid becoming a vector.
clarkLDF(GenIns[, , drop=FALSE], maxage=20)

# The age of the first evaluation may be prior to the end of the origin period.
# Here the ages are in units of "months" and the first evaluation
# is at the end of the third quarter.

X <- GenIns
colnames(X) <- 12 * as.numeric(colnames(X)) - 3
# The indicated liability increases from 1st example above,
# but not significantly.
clarkLDF(X, maxage=240)

# When maxage is infinite, the phase shift has a more noticeable impact:
# a 4-5% increase of the overall CV.
x <- clarkLDF(GenIns, maxage=Inf)
y <- clarkLDF(X, maxage=Inf)

# Percent change in the bottom line CV:
(tail(y$Table65$TotalCV, 1) - tail(x$Table65$TotalCV, 1)) / tail(x$Table65$TotalCV, 1)
```

CLFMdelta

Find "selection consistent" values of delta

Description

This function finds the values of delta, one for each development period, such that the model coefficients resulting from the 'chainladder' function with delta = solution are consistent with an input vector of 'selected' development age-to-age factors.
Usage

\[\text{CLFMdelta}(\text{Triangle, selected, tolerance} = 0.0005, \ldots) \]

Arguments

- **Triangle**: cumulative claims triangle. A \((m \times n)\)-matrix \(C_{ik}\) which is filled for \(k \leq n + 1 - i; i = 1, \ldots, m; m \geq n\), see \texttt{qpaid} for how to use \((m \times n)\)-development triangles with \(m < n\), say higher development period frequency (e.g., quarterly) than origin period frequency (e.g., accident years).
- **selected**: a vector of selected age-to-age factors or "link ratios", one for each development period of 'Triangle'.
- **tolerance**: a 'tolerance' parameter. Default: 0.0005; for each element of 'selected' a solution 'delta' will be found – if possible – so that the chainladder model indexed by 'delta' results in a multiplicative coefficient within 'tolerance' of the 'selected' factor.

... not in use

Details

For a given input Triangle and vector of selected factors, a search is conducted for chainladder models that are "consistent with" the selected factors. By "consistent with" is meant that the coefficients of the \texttt{chainladder} function are equivalent to the selected factors. Not all vectors of selected factors can be considered consistent with a given Triangle; feasibility is subject to restrictions on the 'selected' factors relative to the input 'Triangle'. See the References.

The default average produced by the \texttt{chainladder} function is the volume weighted average and corresponds to \(\text{delta} = 1\) in the call to that function; \(\text{delta} = 2\) produces the simple average; and \(\text{delta} = 0\) produces the "regression average", i.e., the slope of a regression line fit to the data and running through the origin. By convention, if the selected value corresponds to the volume-weighted average, the simple average, or the regression average, then the value returned will be 1, 2, and 0, respectively.

Other real-number values for \text{delta} will produce a different average. The point of this function is to see if there exists a model as determined by \text{delta} whose average is consistent with the value in the selected vector. That is not always possible. See the References.

It can be the case that one or more of the above three "standard averages" will be quite close to each other (indistinguishable within tolerance). In that case, the value returned will be, in the following priority order by convention, 1 (volume weighted average), 2 (simple average), or 0 (regression average).

Value

A vector of real numbers, say \(\text{delta0}\), such that \(\text{coef(chainladder(Triangle, delta = delta0))} = \text{selected within tolerance}\). A logical attribute 'foundSolution' indicates if a solution was found for each element of selected.

Author(s)

Dan Murphy
References

Examples

x <- RAA[1:9,1]
y <- RAA[1:9,2]
F <- y/x
CLFMdelta(RAA[1:9, 1:2], selected = mean(F)) # value is 2, 'foundSolution' is TRUE
CLFMdelta(RAA[1:9, 1:2], selected = sum(y) / sum(x)) # value is 1, 'foundSolution' is TRUE

selected <- mean(c(mean(F), sum(y) / sum(x))) # an average of averages
CLFMdelta(RAA[1:9, 1:2], selected) # about 1.725
CLFMdelta(RAA[1:9, 1:2], selected = 2) # negative solutions are possible

Demonstrating an "unreasonable" selected factor.
CLFMdelta(RAA[1:9, 1:2], selected = 1.9) # NA solution, with warning

c coef.ChainLadder

Extract residuals of a ChainLadder model

Description

Extract residuals of a MackChainLadder model by origin-, calendar- and development period.

Usage

S3 method for class 'ChainLadder'
coef(object, ...)

Arguments

object
output of the chainladder function

...
optional arguments which may become named attributes of the resulting vector

Value

The function returns a vector of the single-parameter coefficients – also called age-to-age (ATA) or report-to-report (RTR) factors – of the models produced by running the 'chainladder' function.

Author(s)

Dan Murphy
Cumulative and incremental triangles

See Also

See Also chainladder

Examples

 coef(chainladder(RAA))

Description

Functions to convert between cumulative and incremental triangles

Usage

 incr2cum(Triangle, na.rm=FALSE)
 cum2incr(Triangle)

Arguments

 Triangle triangle. Assume columns are the development period, use transpose otherwise.
 na.rm logical. Should missing values be removed?

Details

 incr2cum transforms an incremental triangle into a cumulative triangle, cum2incr provides the reserve operation.

Value

 Both functions return a triangle.

Author(s)

 Markus Gesmann, Christophe Dutang

See Also

 See also as.triangle
Examples

See the Taylor/Ashe example in Mack's 1993 paper

#original triangle
GenIns

#incremental triangle
cum2incr(GenIns)

#original triangle
incr2cum(cum2incr(GenIns))

See the example in Mack's 1999 paper

#original triangle
Mortgage
incMortgage <- cum2incr(Mortgage)
#add missing values
incMortgage[1,1] <- NA
incMortgage[2,1] <- NA
incMortgage[1,2] <- NA

#with missing values argument
incr2cum(incMortgage, na.rm=TRUE)

#compared to
incr2cum(Mortgage)

GenIns Run off triangle of claims data.

Description

Run off triangle of accumulated general insurance claims data. GenInsLong provides the same data in a 'long' format.

Usage

GenIns

Format

A matrix with 10 accident years and 10 development years.

Source

getLatestCumulative

References

Examples

```r
GenIns
plot(GenIns)

plot(GenIns, lattice=TRUE)

head(GenInsLong)

## Convert long format into triangle
## Triangles are usually stored as 'long' tables in databases
as.triangle(GenInsLong, origin="accyear", dev="devyear", "incurred claims")
```

getLatestCumulative Triangle information for most recent calendar period.

Description
Return most recent values for all origin periods of a cumulative development triangle.

Usage
getLatestCumulative(Triangle, na.values = NULL)

Arguments

- `Triangle` a Triangle in matrix format.
- `na.values` a vector specifying values that should be considered synonymous with NA when searching for the rightmost non-NA.

Value
A vector of most recent non-NA (and synonyms, if appropriate) values of a triangle for all origin periods. The names of the vector equal the origin names of the Triangle. The vector will have additional attributes: "latestcol" equalling the index of the column in Triangle corresponding to the row's rightmost entry; "rowsname" equalling the name of the row dimension of Triangle, if any; "colnames" equalling the corresponding column name of Triangle, if any; "colsname" equalling the name of the column dimension of Triangle, if any.

Author(s)
Ben Escoto, Markus Gesmann, Dan Murphy
See Also

See also `as.triangle`.

Examples

```r
RAA
getLatestCumulative(RAA)
Y <- matrix(c(1, 2, 3,
   4, 5, 0,
   6, NA, NA), byrow=TRUE, nrow=3)
gLatestCumulative(Y) # c(3, 0, 6)
gLatestCumulative(Y, na.values = 0) # c(3, 5, 6)
```

```
glmReserve glmReserve

GLM-based Reserving Model

Description

This function implements loss reserving models within the generalized linear model framework. It takes accident year and development lag as mean predictors in estimating the ultimate loss reserves, and provides both analytical and bootstrapping methods to compute the associated prediction errors. The bootstrapping approach also generates the full predictive distribution for loss reserves.

Usage

```r
glmReserve(triangle, var.power = 1, link.power = 0, cum = TRUE,
 mse.method = c("formula", "bootstrap"), nsim = 1000, ...)
```

Arguments

- `triangle` An object of class `triangle`.
- `var.power` The index \( p \) of the power variance function \( V(\mu) = \mu^p \). Default to \( p = 1 \), which is the over-dispersed Poisson model. If NULL, it will be assumed to be in \((1, 2)\) and estimated using the `cplm` package. See `tweedie`.
- `link.power` The index of power link function. The default `link.power = 0` produces a log link. See `tweedie`.
- `cum` A logical value indicating whether the input triangle is on the cumulative or the incremental scale. If TRUE, then `triangle` is assumed to be on the cumulative scale, and it will be converted to incremental losses internally before a GLM is fitted.
- `mse.method` A character indicating whether the prediction error should be computed analytically (mse.method = "formula") or via bootstrapping (mse.method = "bootstrap"). Partial match is supported.
- `nsim` Number of simulations to be performed in the bootstrapping, with a default value of 1000.
- `...` Arguments to be passed onto the function `glm` or cpglm such as contrasts or control. It is important that offset and weight should not be specified. Otherwise, an error will be reported and the program will quit.
Details

This function takes an insurance loss triangle, converts it to incremental losses internally if necessary, transforms it to the long format (see as.data.frame) and fits the resulting loss data with a generalized linear model where the mean structure includes both the accident year and the development lag effects. The distributions allowed are the exponential family that admits a power variance function, that is, \( V(\mu) = \mu^p \). This subclass of distributions is usually called the Tweedie distribution and includes many commonly used distributions as special cases. This function does not allow the user to specify the GLM options through the usual family argument, but instead, it uses the tweedie family internally and takes two arguments var.power and link.power through which the user still has full control of the distribution forms and link functions. The argument var.power determines which specific distribution is to be used, and link.power determines the form of the link function. When the Tweedie compound Poisson distribution \( 1 < p < 2 \) is to be used, the user has the option to specify var.power = NULL, where the variance power \( p \) will be estimated from the data using the cplm package. The bcplm function in the cplm package also has an example for the Bayesian compound Poisson loss reserving model. See details in tweedie, cplm and bcplm.

Also, the function allows certain measures of exposures to be used in an offset term in the underlying GLM. To do this, the user should not use the usual offset argument in glm. Instead, one specifies the exposure measure for each accident year through the exposure attribute of triangle. Make sure that these exposures are in the original scale (no log transformations for example), and they are in the order consistent with the accident years. If the exposure attribute is not NULL, the glmReserve function will use these exposures, link-function-transformed, in the offset term of the GLM. For example, if the link function is log, then the log of the exposure is used as the offset, not the original exposure. See the examples below. Moreover, the user MUST NOT supply the typical offset or weight as arguments in the list of additional arguments . . . . . . offset should be specified as above, while weight is not implemented (due to prediction reasons).

Two methods are available to assess the prediction error of the estimated loss reserves. One is using the analytical formula (mse.method = "formula") derived from the first-order Taylor approximation. The other is using bootstrapping (mse.method = "bootstrap") that reconstructs the triangle nsim times by sampling with replacement from the GLM (Pearson) residuals. Each time a new triangle is formed, GLM is fitted and corresponding loss reserves are generated. Based on these predicted mean loss reserves, and the model assumption about the distribution forms, realizations of the predicted values are generated via the rtweedie function. Prediction errors as well as other uncertainty measures such as quantiles and predictive intervals can be calculated based on these samples.

Value

The output is an object of class "glmReserve" that has the following components:

- **call** the matched call.
- **summary** A data frame containing the predicted loss reserve statistics. Similar to the summary statistics from MackChainLadder.
- **Triangle** The input triangle.
- **FullTriangle** The completed triangle, where empty cells in the original triangle are filled with model predictions.
- **model** The fitted GLM, a class of "glm" or "cplm". It is most convenient to work with this component when model fit information is wanted.
sims.par a matrix of the simulated parameter values in the bootstrapping.
sims.reserve.mean a matrix of the simulated mean loss reserves (without the process variance) for each year in the bootstrapping.
sims.par a matrix of the simulated realizations of the loss reserves (with the process variance) for each year in the bootstrapping. This can be used to summarize the predictive uncertainty of the loss reserves.

Note

The use of GLM in insurance loss reserving has many compelling aspects, e.g.,

- when over-dispersed Poisson model is used, it reproduces the estimates from Chain Ladder;
- it provides a more coherent modeling framework than the Mack method;
- all the relevant established statistical theory can be directly applied to perform hypothesis testing and diagnostic checking;

However, the user should be cautious of some of the key assumptions that underline the GLM model, in order to determine whether this model is appropriate for the problem considered:

- the GLM model assumes no tail development, and it only projects losses to the latest time point of the observed data. To use a model that enables tail extrapolation, please consider the growth curve model ClarkLDF or ClarkCapeCod;
- the model assumes that each incremental loss is independent of all the others. This assumption may not be valid in that cells from the same calendar year are usually correlated due to inflation or business operating factors;
- the model tends to be over-parameterized, which may lead to inferior predictive performance.

To solve these potential problems, many variants of the current basic GLM model have been proposed in the actuarial literature. Some of these may be included in the future release.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

References


See Also

See also glm, tweedie, cpglm and MackChainLadder.
Examples

data(GenIns)
GenIns <- GenIns / 1000

# over-dispersed Poisson: reproduce ChainLadder estimates
(fit1 <- glmReserve(GenIns))
summary(fit1, type = "model")  # extract the underlying glm

# Gamma GLM:
(fit2 <- glmReserve(GenIns, var.power = 2))

# compound Poisson GLM (variance function estimated from the data):
#(fit3 <- glmReserve(GenIns, var.power = NULL))

# Now suppose we have an exposure measure
# we can put it as an offset term in the model
# to do this, use the "exposure" attribute of the 'triangle'
expos <- (7 + 1:10 * 0.4) * 100
GenIns2 <- GenIns
attr(GenIns2, "exposure") <- expos
(fit4 <- glmReserve(GenIns2))

# use bootstrapping to compute prediction error
## Not run:
set.seed(111)
(fit5 <- glmReserve(GenIns, mse.method = "boot"))

# compute the quantiles of the predicted loss reserves
t(apply(fit5$sims.reserve.pred, 2, quantile,
    c(0.025, 0.25, 0.5, 0.75, 0.975)))

## End(Not run)

---

Join2Fits

Join Two Fitted MultiChainLadder Models

Description

This function is created to facilitate the fitting of the multivariate functions when specifying different models in two different development periods, especially when separate chain ladder is used in later periods.

Usage

Join2Fits(object1, object2)
Arguments

object1 An object of class "MultiChainLadder"
object2 An object of class "MultiChainLadder"

Details

The inputs must be of class "MultiChainLadder" because this function depends on the model slot to determine what kind of object is to be created and returned. If both objects have "MCL", then an object of class "MCLFit" is created; if one has "GMCL" and one has "MCL", then an object of class "GMCLFit" is created, where the one with "GMCL" is assumed to come from the first development periods; if both have "GMCL", then an object of class "GMCLFit" is created.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also MultiChainLadder

Description

This function combines first momoent estimation from fitted regression models and second moment estimation from Mse method to construct an object of class "MultiChainLadder", for which a variety of methods are defined, such as summary and plot.

Usage

JoinFitMse(models, mse.models)

Arguments

models fitted regression models, either of class "MCLFit" or "GMCLFit".
mse.models output from a call to Mse, which is of class "MultiChainLadderMse".

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also MultiChainLadder.
liab  

Run off triangle of accumulated claim data

Description

Run-off triangles of General Liability and Auto Liability.

Usage

data(auto)

Format

A list of two matrices, General Liability and Auto Liability respectively.

Source

Braun C (2004). The prediction error of the chain ladder method applied to correlated run off triangles. ASTIN Bulletin 34(2): 399-423

Examples

data(liab)
names(liab)

lrfunction  

Calculate the Link Ratio Function

Description

This calculates the link ratio function per the CLFM paper.

Usage

LRfunction(x, y, delta)

Arguments

x  
beginning value of loss during a development period

y  
ending value of loss during a development period

delta  
numeric

Details

Calculated the link ratios resulting from a chainladder model over a development period indexed by (possibly vector valued) real number delta. See formula (5) in the References.
Value

A vector of link ratios.

Author(s)

Dan Murphy

References


Examples

```r
x <- RAA[1:9,1]
y <- RAA[1:9,2]
delta <- seq(-2, 2, by = .1)
plot(delta, LRfunction(x, y, delta), type = "l")
```

M3IR5

Run off triangle of claims data

Description

Run off triangle of simulated incremental claims data

Usage

data(M3IR5)

Format

A matrix with simulated incremental claims of 14 accident years and 14 development years.

Source


Examples

```r
M3IR5
plot(M3IR5)
plot(incr2cum(M3IR5), lattice=TRUE)
```
**MackChainLadder**

**Mack-Chain-Ladder Model**

**Description**

The Mack-chain-ladder model forecasts future claims developments based on a historical cumulative claims development triangle and estimates the standard error around those.

**Usage**

```r
MackChainLadder(Triangle, weights = 1, alpha=1, est.sigma="log-linear", tail=FALSE, tail.se=NULL, tail.sigma=NULL, mse.method="Mack")
```

**Arguments**

- **Triangle** cumulative claims triangle. Assume columns are the development period, use transpose otherwise. A (mxn)-matrix $C_{ik}$ which is filled for $k \leq n + 1 - i; i = 1, \ldots, m; m \geq n$, see `qpaid` for how to use (mxn)-development triangles with m<n, say higher development period frequency (e.g quarterly) than origin period frequency (e.g accident years).

- **weights** weights. Default: 1, which sets the weights for all triangle entries to 1. Otherwise specify weights as a matrix of the same dimension as Triangle with all weight entries in [0; 1]

- **alpha** 'weighting' parameter. Default: 1 for all development periods; alpha=1 gives the historical chain ladder age-to-age factors, alpha=0 gives the straight average of the observed individual development factors and alpha=2 is the result of an ordinary regression of $C_{i,k+1}$ against $C_{i,k}$ with intercept 0, see also Mack’s 1999 paper and chainladder

- **est.sigma** defines how to estimate $\sigma_{n-1}$, the variability of the individual age-to-age factors at development time $n-1$. Default is "log-linear" for a log-linear regression, "Mack" for Mack’s approximation from his 1999 paper. Alternatively the user can provide a numeric value. If the log-linear model appears to be inappropriate (p-value > 0.05) the ‘Mack’ method will be used instead and a warning message printed. Similarly, if Triangle is so small that log-linear regression is being attempted on a vector of only one non-NA average link ratio, the ‘Mack’ method will be used instead and a warning message printed.

- **tail** can be logical or a numeric value. If tail=FALSE no tail factor will be applied, if tail=TRUE a tail factor will be estimated via a linear extrapolation of $\log(\text{chainladder factors}) - 1)$. if tail is a numeric value than this value will be used instead.

- **tail.se** defines how the standard error of the tail factor is estimated. Only needed if a tail factor > 1 is provided. Default is NULL. If tail.se is NULL, tail.se is estimated via "log-linear" regression, if tail.se is a numeric value than this value will be used instead.
tail.sigma defines how to estimate individual tail variability. Only needed if a tail factor > 1 is provided. Default is NULL. If tail.sigma is NULL, tail.sigma is estimated via "log-linear" regression, if tail.sigma is a numeric value than this value will be used instead.

mse.method method used for the recursive estimate of the parameter risk component of the mean square error. Value "Mack" (default) coincides with Mack’s formula; "Independence" includes the additional cross-product term as in Murphy and BBMW. Refer to References below.

Details

Following Mack’s 1999 paper let $C_{ik}$ denote the cumulative loss amounts of origin period (e.g. accident year) $i = 1, \ldots, m$, with losses known for development period (e.g. development year) $k \leq n+1-i$. In order to forecast the amounts $C_{ik}$ for $k > n+1-i$ the Mack chain-ladder-model assumes:

\begin{align*}
\text{CL1: } & E[F_{ik}|C_{i1}, C_{i2}, \ldots, C_{ik}] = f_k \text{ with } F_{ik} = \frac{C_{i,k+1}}{C_{ik}} \\
\text{CL2: } & \text{Var}(\frac{C_{i,k+1}}{C_{ik}}|C_{i1}, C_{i2}, \ldots, C_{ik}) = \frac{\sigma_k^2}{w_{ik}C_{ik}^{\alpha}} \\
\text{CL3: } & \{C_{i1}, \ldots, C_{in}\}, \{C_{j1}, \ldots, C_{jn}\}, \text{ are independent for origin period } i \neq j
\end{align*}

with $w_{ik} \in [0; 1]$, $\alpha \in \{0, 1, 2\}$. If these assumptions are hold, the Mack-chain-ladder-model gives an unbiased estimator for IBNR (Incurred But Not Reported) claims.

The Mack-chain-ladder model can be regarded as a weighted linear regression through the origin for each development period: $lm(\gamma \sim x + \theta, \text{weights}=w/x^{(2-alpha)})$, where $y$ is the vector of claims at development period $k + 1$ and $x$ is the vector of claims at development period $k$.

Value

MackChainLadder returns a list with the following elements

- call matched call
- Triangle input triangle of cumulative claims
- FullTriangle forecasted full triangle
- Models linear regression models for each development period
- $f$ chain-ladder age-to-age factors
- $f$.se standard errors of the chain-ladder age-to-age factors $f$ (assumption CL1)
- $F$.se standard errors of the true chain-ladder age-to-age factors $F_{ik}$ (square root of the variance in assumption CL2)
- sigma sigma parameter in CL2
- Mack.ProcessRisk variability in the projection of future losses not explained by the variability of the link ratio estimators (unexplained variation)
MackChainLadder

Mack.ParameterRisk
variability in the projection of future losses explained by the variability of the
link-ratio estimators alone (explained variation)

Mack.S.E
total variability in the projection of future losses by the chain ladder method; the
square root of the mean square error of the chain ladder estimate: \( \text{Mack.S.E}^2 = \text{Mack.ProcessRisk}^2 + \text{Mack.ParameterRisk}^2 \)

Total.Mack.S.E
total variability of projected loss for all origin years combined

Total.ProcessRisk
vector of process risk estimate of the total of projected loss for all origin years
combined by development period

Total.ParameterRisk
vector of parameter risk estimate of the total of projected loss for all origin years
combined by development period

weights
weights used.

alpha
alphas used.

tail
tail factor used. If tail was set to TRUE the output will include the linear model
used to estimate the tail factor

Note
Additional references for further reading:

*England, PD and Verrall, RJ. Stochastic Claims Reserving in General Insurance (with discussion),
British Actuarial Journal 8, III. 2002

*Barnett and Zehnwirth. Best estimates for reserves. Proceedings of the CAS, LXXXVI I(167),
November 2000.

Author(s)
Markus Gesmann <markus.gesmann@gmail.com>

References

*Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates.

*Thomas Mack. The standard error of chain ladder reserve estimates: Recursive calculation and

*Murphy, Daniel M. Unbiased Loss Development Factors. Proceedings of the Casualty Actuarial

*Buchwalder, Bühlmann, Merz, and Wüthrich. The Mean Square Error of Prediction in the Chain

See Also
See also qpaid for dealing with non-square triangles, chainladder for the underlying chain-ladder
method, summary.MackChainLadder, plot.MackChainLadder and residuals.MackChainLadder
displaying results and finally CDR.MackChainLadder for the one year claims development result.
Examples

```r
See the Taylor/Ashe example in Mack's 1993 paper
GenIns
plot(GenIns)
plot(GenIns, lattice=TRUE)
GNI <- MackChainLadder(GenIns, est.sigma="Mack")
GNI$
GNI$sigma^2
GNI # compare to table 2 and 3 in Mack's 1993 paper
plot(GNI)
plot(GNI, lattice=TRUE)

Different weights
Using alpha=0 will use straight average age-to-age factors
MackChainLadder(GenIns, alpha=0)$
You get the same result via:
apply(GenIns[,,-1]/GenIns[,,-10],2, mean, na.rm=TRUE)

Tail
See the example in Mack's 1999 paper
Mortgage
m <- MackChainLadder(Mortgage)
round(summary(m)$Totals["CV(IBNR)",], 2) ## 26% in Table 6 of paper
plot(Mortgage)
Specifying the tail and its associated uncertainty parameters
MRT <- MackChainLadder(Mortgage, tail=1.05, tail.sigma=71, tail.se=0.02, est.sigma="Mack")
MRT
plot(MRT, lattice=TRUE)
Specify just the tail and the uncertainty parameters will be estimated
MRT <- MackChainLadder(Mortgage, tail=1.05)
MRT$f.se[9] # close to the 0.02 specified above
MRT$sigma[9] # less than the 71 specified above
Note that the overall CV dropped slightly
round(summary(MRT)$Totals["CV(IBNR)",], 2) ## 24%
tail parameter uncertainty equal to expected value
MRT <- MackChainLadder(Mortgage, tail=1.05, tail.se = .05)
round(summary(MRT)$Totals["CV(IBNR)",], 2) ## 27%

Parameter-risk (only) estimate of the total reserve = 3142387
tail(MRT$Total.ParameterRisk, 1) # located in last (ultimate) element
Parameter-risk (only) CV is about 19%
tail(MRT$Total.ParameterRisk, 1) / summary(MRT)$Totals["IBNR",]

Three terms in the parameter risk estimate
First, the default (Mack) without the tail
m <- MackChainLadder(RAA, mse.method = "Mack")
summary(m)$Totals["Mack S.E.",]
Then, with the third term
m <- MackChainLadder(RAA, mse.method = "Independence")
summary(m)$Totals["Mack S.E.",] ## Not significantly greater

One year claims development results
```
MCLpaid

Run off triangles of accumulated paid and incurred claims data.

Description

Run-off triangles based on a fire portfolio

Usage

data(MCLpaid)

data(MCLincurred)

Format

A matrix with 7 origin years and 7 development years.

Source


Examples

MCLpaid

MCLincurred

op=par(mfrow=c(2,1))

plot(MCLpaid)

plot(MCLincurred)

par(op)
Mortgage

Run off triangle of accumulated claims data

Description

Development triangle of a mortgage guarantee business

Usage

data(Mortgage)

Format

A matrix with 9 accident years and 9 development years.

Source


References


Examples

Mortgage
Mortgage
plot(Mortgage)
plot(Mortgage, lattice=TRUE)

Mse-methods

Methods for Generic Function Mse

Description

Mse is a generic function to calculate mean square error estimations in the chain ladder framework.

Usage

Mse(ModelFit, FullTriangles, ...)

# S4 method for signature 'GMCLFit,triangles'
Mse(ModelFit, FullTriangles, ...)
# S4 method for signature 'MCLFit,triangles'
Mse(ModelFit, FullTriangles, mse.method="Mack", ...)
Arguments

- **ModelFit**
  An object of class "GMCLFit" or "MCLFit".

- **FullTriangles**
  An object of class "triangles". Should be the output from a call of `predict`.

- **mse.method**
  Character strings that specify the MSE estimation method. Only works for "MCLFit". Use "Mack" for the generalization of the Mack (1993) approach, and "Independence" for the conditional resampling approach in Merz and Wuthrich (2008).

... Currently not used.

Details

These functions calculate the conditional mean square errors using the recursive formulas in Zhang (2010), which is a generalization of the Mack (1993, 1999) formulas. In the GMCL model, the conditional mean square error for single accident years and aggregated accident years are calculated as:

\[
\hat{\text{mse}}(\hat{Y}_{i,k+1}|D) = \hat{B}_k \hat{\text{mse}}(\hat{Y}_{i,k}|D) \hat{B}_k + (\hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\hat{Y}_{i,k} \otimes I) + \hat{\Sigma}_{\epsilon_{ik}}.
\]

\[
\hat{\text{mse}}(\sum_{i=a_k}^{l} \hat{Y}_{i,k+1}|D) = \hat{B}_k \hat{\text{mse}}(\sum_{i=a_k+1}^{l} \hat{Y}_{i,k}|D) \hat{B}_k + (\sum_{i=a_k}^{l} \hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\sum_{i=a_k}^{l} \hat{Y}_{i,k} \otimes I) + \sum_{i=a_k}^{l} \hat{\Sigma}_{\epsilon_{ik}}.
\]

In the MCL model, the conditional mean square error from Merz and Wüthrich (2008) is also available, which can be shown to be equivalent as the following:

\[
\hat{\text{mse}}(\hat{Y}_{i,k+1}|D) = (\hat{\beta}_k \hat{\beta}_k') \odot \hat{\text{mse}}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\hat{Y}_{i,k} \hat{Y}_{i,k}') + \hat{\Sigma}_{\epsilon_{ik}} + \hat{\Sigma}_{\beta_k} \odot \hat{\text{mse}}^E(\hat{Y}_{i,k}|D).
\]

\[
\hat{\text{mse}}(\sum_{i=a_k}^{l} \hat{Y}_{i,k+1}|D) = (\hat{\beta}_k \hat{\beta}_k') \odot \sum_{i=a_k+1}^{l} \hat{\text{mse}}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\sum_{i=a_k}^{l} \hat{Y}_{i,k} \hat{Y}_{i,k}') + \sum_{i=a_k}^{l} \hat{\Sigma}_{\epsilon_{ik}} + \hat{\Sigma}_{\beta_k} \odot \sum_{i=a_k}^{l} \hat{\text{mse}}^E(\hat{Y}_{i,k}|D).
\]

For the Mack approach in the MCL model, the cross-product term \(\hat{\Sigma}_{\beta_k} \odot \hat{\text{mse}}^E(\hat{Y}_{i,k}|D)\) in the above two formulas will drop out.

Value

`mse` returns an object of class "MultiChainLadderMse" that has the following elements:

- **mse.ay** conditional mse for each accident year
- **mse.ay.est** conditional estimation mse for each accident year
- **mse.ay.proc** conditional process mse for each accident year
- **mse.total** conditional mse for aggregated accident years
- **mse.total.est** conditional estimation mse for aggregated accident years
- **mse.total.proc** conditional process mse for aggregated accident years
- **FullTriangles** completed triangles
MultiChainLadder

Description

The function MultiChainLadder implements multivariate methods to forecast insurance loss payments based on several cumulative claims development triangles. These methods are multivariate extensions of the chain ladder technique, which develop several correlated triangles simultaneously in a way that both contemporaneous correlations and structural relationships can be accounted for. The estimated conditional Mean Square Errors (MSE) are also produced.

Usage

MultiChainLadder(Triangles, fit.method = "SUR", delta = 1,
int = NULL, restrict.regMat = NULL, extrap = TRUE,
mse.method = "Mack", model = "MCL", ...)

MultiChainLadder2(Triangles, mse.method = "Mack", last = 3,
type = c("MCL", "MCL+int", "GMCL-int", "GMCL"), ...)

Arguments

Triangles a list of cumulative claims triangles of the same dimensions.

fit.method the method used to fit the multivariate regression in each development period. The default is "SUR" - seemingly unrelated regressions. When "OLS" (Ordinary Least Squares) is used, this is the same as developing each triangle separately.

delta parameter for controlling weights. It is used to determine the covariance structure \( D(Y_{i,k}^{\delta/2})\Sigma_k D(Y_{i,k}^{\delta/2}) \). The default value 1 means that the variance is proportional to the cumulative loss from the previous period.

int a numeric vector that indicates which development periods have intercepts specified. This only takes effect for model = "GMCL". The default NULL means that no intercepts are specified.

References


See Also

See also MultiChainLadder.
restrict.regMat

a list of matrix specifying parameter restriction matrix for each period. This is only used for \texttt{model = "GMCL"}. The default value \texttt{NULL} means no restriction is imposed on the development matrix. For example, if there are 3 triangles, there will be 9 parameters in the development matrix for each period if \texttt{restrict.regMat = NULL}. See \texttt{systemfit} for how to specify the appropriate parameter constraints.

extrap

a logical value indicating whether to use Mack’s extrapolation method for the last period to get the residual variance estimation. It only takes effect for \texttt{model = "MCL"}. If the data are trapezoids, it is set to be \texttt{FALSE} automatically and a warning message is given.

mse.method

method to estimate the mean square error. It can be either "Mack" or "Independence", which are the multivariate generalization of Mack’s formulas and the conditional re-sampling approach, respectively.

model

the structure of the model to be fitted. It is either "MCL" or "GMCL". See details below.

last

an integer. The \texttt{MultiChainLadder2} function splits the triangles into 2 parts internally (see details below), and the \texttt{last} argument indicates how many of the development periods in the tail go into the second part of the split. The default is 3.

type

the type of the model structure to be specified for the first part of the split model in \texttt{MultiChainLadder2}. "MCL"- the multivariate chain ladder with diagonal development matrix; "MCL+int"- the multivariate chain ladder with additional intercepts; "GMCL-int"- the general multivariate chain ladder without intercepts; and "GMCL" - the full general multivariate chain ladder with intercepts and non-diagonal development matrix.

... arguments passed to \texttt{systemfit}.

Details

This function implements multivariate loss reserving models within the chain ladder framework. Two major models are included. One is the Multivariate Chain Ladder (MCL) model proposed by Prohl and Schmidt (2005). This is a direct multivariate generalization of the univariate chain ladder model in that losses from different triangles are assumed to be correlated but the mean development in one triangle only depends on its past values, not on the observed values from other triangles. In contrast, the other model, the General Multivariate Chain Ladder (GMCL) model outlined in Zhang (2010), extends the MCL model by allowing development dependencies among different triangles as well as the inclusion of regression intercepts. As a result, structurally related triangles, such as the paid and incurred loss triangles or the paid loss and case reserve triangles, can be developed together while still accounting for the potential contemporaneous correlations. While the MCL model is a special case of the GMCL model, it is programmed and listed separately because: a) it is an important model for its own sake; b) different MSE methods are only available for the MCL model; c) extrapolation of the residual variance estimation can be implemented for the MCL model, which is considerably difficult for the GMCL model.

We introduce some details of the GMCL model in the following. Assume N triangles are available. Denote $Y_{i,k} = (Y_{i,k}^{(1)}, \ldots, Y_{i,k}^{(N)})$ as an $N \times 1$ vector of cumulative losses at accident year $i$ and
development year k, where (n) refers to the n-th triangle. The GMCL model in development period
k (from development year k to year k+1) is:

$$Y_{i,k+1} = A_k + B_k \cdot Y_{i,k} + \epsilon_{i,k},$$

where $A_k$ is a column of intercepts and $B_k$ is the $N \times N$ development matrix. By default, MultiChainLadder sets $A_k$ to be zero. This behavior can be changed by appropriately specifying the int argument. Assumptions for this model are:

$$E(\epsilon_{i,k} | Y_{i,1}, \ldots, Y_{i,I+1-k}) = 0.$$

$$cov(\epsilon_{i,k} | Y_{i,1}, \ldots, Y_{i,I+1-k}) = \Sigma_{\epsilon_{i,k}} = D(Y_{i,k}^{\delta/2}) \Sigma_k D(Y_{i,k}^{\delta/2}).$$

losses of different accident years are independent.

$\epsilon_{i,k}$ are symmetrically distributed.

The GMCL model structure is generally over-parameterized. Parameter restrictions are usually necessary for the estimation to be feasible, which can be specified through the restrict.regMat argument. We refer the users to the documentation for systemfit for details and the demo of the present function for examples.

In particular, if one restricts the development matrix to be diagonal, the GMCL model will reduce to the MCL model. When non-diagonal development matrix is used and the GMCL model is applied to paid and incurred loss triangles, it can reflect the development relationship between the two triangles, as described in Quarg and Mack (2004). The full bivariate model is identical to the "double regression" model described by Mack (2003), which is argued by him to be very similar to the Munich Chain Ladder (MuCL) model. The GMCL model with intercepts can also help improve model adequacy as described in Barnett and Zehnwirth (2000).

Currently, the GMCL model only works for trapezoid data, and only implements mse.method = "Mack". The MCL model allows an additional mse estimation method that assumes independence among the estimated parameters. Further, the MCL model using fit.method = "OLS" will be equivalent to running univariate chain ladders separately on each triangle. Indeed, when only one triangle is specified (as a list), the MCL model is equivalent to MackChainLadder.

The GMCL model allows different model structures to be specified in each development period. This is generally achieved through the combination of the int argument, which specifies the periods that have intercepts, and the restrict.regMat argument, which imposes parameter restrictions on the development matrix.

In using the multivariate methods, we often specify separate univariate chain ladders for the tail periods to stabilize the estimation - there are few data points in the tail and running a multivariate model often produces extremely volatile estimates or even fails. In this case, we can use the subset operator "[" defined for class triangles to split the input data into two parts. We can specify a multivariate model with rich structures on the first part to reflect the multivariate dependencies, and simply apply multiple univariate chain ladders on the second part. The two models are subsequently joined together using the Join2fifs function. We can then invoke the predict and Mse methods to produce loss predictions and mean square error estimations. They can further be combined via the JoinMse function to construct an object of class MultiChainLadder. See the demo for such examples.

To facilitate such a split-and-join process for most applications, we have created the function MultiChainLadder2. This function splits the data according to the last argument (e.g., if last = 3, the last three periods go into the second part), and fits the first part according to the structure indicated in the type argument. See the ‘Arguments’ section for details.
**Value**

`MultiChainLadder` returns an object of class `MultiChainLadder` with the following slots:

- **model**
  - the model structure used, either "MCL" or "GMCL"

- **Triangles**
  - input triangles of cumulative claims that are converted to class triangles internally.

- **models**
  - fitted models for each development period. This is the output from the call of `systemfit`.

- **coefficients**
  - estimated regression coefficients or development parameters. They are put into the matrix format for the GMCL model.

- **coefCov**
  - estimated variance-covariance matrix for the regression coefficients.

- **residCov**
  - estimated residual covariance matrix.

- **fit.method**
  - multivariate regression estimation method

- **delta**
  - the value of delta

- **mse.ay**
  - mean square error matrix for each accident year

- **mse.ay.est**
  - estimation error matrix for each accident year

- **mse.ay.proc**
  - process error matrix for each accident year

- **mse.total**
  - mean square error matrix for all accident years combined

- **mse.total.est**
  - estimation error matrix for all accident years combined

- **mse.total.proc**
  - process error matrix for all accident years combined

- **fulltriangles**
  - the forecasted full triangles of class triangles

- **int**
  - intercept indicators

**Note**

When `MultiChainLadder` or `MultiChainLadder2` fails, the most possible reason is that there is little or no development in the tail periods. That is, the development factor is 1 or almost equal to 1. In this case, the `systemfit` function may fail even for `fit.method = "OLS"`, because the residual covariance matrix $\Sigma_k$ is singular. The simplest solution is to remove these columns using the "[" operator and fit the model on the remaining part.

Also, we recommend the use of `MultiChainLadder2` over `MultiChainLadder`. The function `MultiChainLadder2` meets the need for most applications, is relatively easy to use and produces more stable but very similar results to `MultiChainLadder`. Use `MultiChainLadder` only when non-standard situation arises, e.g., when different parameter restrictions are needed for different periods. See the demo for such examples.

**Author(s)**

Wayne Zhang <actuary_zhang@hotmail.com>
References


See Also

See also MackChainLadder, MunichChainLadder, triangles, MultiChainLadder, summary, MultiChainLadder-method and plot, MultiChainLadder, missing-method.

Examples

# This shows that the MCL model using "OLS" is equivalent to
# the MackChainLadder when applied to one triangle

data(GenIns)
(U1 <- MackChainLadder(GenIns, est.sigma = "Mack"))
(U2 <- MultiChainLadder(list(GenIns), fit.method = "OLS"))

# show plots
parold <- par(mfrow = c(2, 2))
plot(U2, which.plot = 1:4)
plot(U2, which.plot = 5)
par(parold)

# For mse.method = "Independence", the model is equivalent
# to that in Buchwalder et al. (2006)

(B1 <- MultiChainLadder(list(GenIns), fit.method = "OLS",
    mse.method = "Independence"))

# use the unbiased residual covariance estimator
# in Herz and Wuthrich (2008)
(W1 <- MultiChainLadder2(liab, mse.method = "Independence",
    control = systemfit.control(methodResidCov = "Theil")))

## Not run:
# use the iterative residual covariance estimator
for (i in 1:5){
  W2 <- MultiChainLadder2(liab, mse.method = "Independence",
                          control = systemfit.control(methodResidCov = "Theil", maxiter = i))
  print(format(summary(W2)$report.summary[[3]][15, 4:5],
              digits = 6, big.mark = "\,",))
}

# The following fits an MCL model with intercepts for years 1:7
# and separate chain ladder models for the rest periods
f1 <- MultiChainLadder2(auto, type = "MCL+int")

# compare with the model without intercepts through residual plots
f0 <- MultiChainLadder2(auto, type = "MCL")

parold <- par(mfrow = c(2, 3), mar = c(3, 3, 2, 1))
mt <- list(c("Personal Paid", "Personal Incurred", "Commercial Paid"))
plot(f0, which.plot = 3, main = mt)
plot(f1, which.plot = 3, main = mt)
par(parold)

## summary statistics
summary(f1, portfolio = "1+3")$report.summary[[4]]

# model for joint development of paid and incurred triangles
da <- auto[1:2]
# MCL with diagonal development
M0 <- MultiChainLadder(da)
# non-diagonal development matrix with no intercepts
M1 <- MultiChainLadder2(da, type = "GMCL-int")
# Munich Chain Ladder
M2 <- MunichChainLadder(da[[1]], da[[2]])
# compile results and compare projected paid to incurred ratios
r1 <- lapply(list(M0, M1), function(x){
  ult <- summary(x)$Ultimate
  ult[, 1] / ult[, 2]
})
names(r1) <- c("MCL", "GMCL")
r2 <- summary(M2)[[1]][, 6]
r2 <- c(r2, summary(M2)[[2]][2, 3])
print(do.call(cbind, c(r1, list(MuCl = r2))) * 100, digits = 4)

## End(Not run)

# To reproduce results in Zhang (2010) and see more examples, use:
## Not run:
demo(MultiChainLadder)

## End(Not run)
MultiChainLadder-class

Class "MultiChainLadder" of Multivariate Chain Ladder Results

Description

This class includes the first and second moment estimation result using the multivariate reserving methods in chain ladder. Several primitive methods and statistical methods are also created to facilitate further analysis.

Objects from the Class

Objects can be created by calls of the form `new("MultiChainLadder", ...),` or they could also be a result of calls from `MultiChainLadder` or `JoinFitMse`.

Slots

- **model**: Object of class "character". Either "MCL" or "GMCL".
- **trianles**: Object of class "triangles". Input triangles.
- **models**: Object of class "list". Fitted regression models using `systemfit`.
- **coefficients**: Object of class "list". Estimated regression coefficients.
- **coefCov**: Object of class "list". Estimated variance-covariance matrix of coefficients.
- **residCov**: Object of class "list". Estimated residual covariance matrix.
- **fit.method**: Object of class "character". Could be values of "SUR" or "OLS".
- **delta**: Object of class "numeric". Parameter for weights.
- **int**: Object of class "NullNum". Indicator of which periods have intercepts.
- **mse.ay**: Object of class "matrix". Conditional mse for each accident year.
- **mse.ay.est**: Object of class "matrix". Conditional estimation mse for each accident year.
- **mse.ay.proc**: Object of class "matrix". Conditional process mse for each accident year.
- **mse.total**: Object of class "matrix". Conditional mse for aggregated accident years.
- **mse.total.est**: Object of class "matrix". Conditional estimation mse for aggregated accident years.
- **mse.total.proc**: Object of class "matrix". Conditional process mse for aggregated accident years.
- **fulltriangles**: Object of class "triangles". Completed triangles.
- **restrict.regMat**: Object of class "NullList"

Extends

Class "MultiChainLadderFit", directly. Class "MultiChainLadderMse", directly.
Methods

$ signature(x = "MultiChainLadder"): Method for primitive function ",\$". It extracts a slot of x with a specified slot name, just as in list.

[[ signature(x = "MultiChainLadder", i = "numeric", j = "missing"): Method for primitive function ",[[.\". It extracts the i-th slot of a "MultiChainLadder" object, just as in list. i could be a vector.

[[ signature(x = "MultiChainLadder", i = "character", j = "missing"): Method for primitive function ",[[.\". It extracts the slots of a "MultiChainLadder" object with names in i, just as in list. i could be a vector.

doCoe signature(object = "MultiChainLadder"): Method for function doCoe, to extract the estimated development matrix. The output is a list.

fitted signature(object = "MultiChainLadder"): Method for function fitted, to calculate the fitted values in the original triangles. Note that the return value is a list of fitted valued based on the original scale, not the model scale which is first divided by \(Y_{i,k}^{\delta/2}\).

names signature(x = "MultiChainLadder"): Method for function names, which returns the slot names of a "MultiChainLadder" object.

plot signature(x = "MultiChainLadder", y = "missing"): See plot,MultiChainLadder,missing-method.

residCov signature(object = "MultiChainLadder"): S4 generic function and method to extract residual covariance from a "MultiChainLadder" object.

residCor signature(object = "MultiChainLadder"): S4 generic function and method to extract residual correlation from a "MultiChainLadder" object.

residuals signature(object = "MultiChainLadder"): Method for function residuals, to extract residuals from a system of regression equations. These residuals are based on model scale, and will not be equivalent to those on the original scale if \(\delta\) is not set to be 0. One should use rstandard instead, which is independent of the scale.

resid signature(object = "MultiChainLadder"): Same as residuals.

rstandard signature(model = "MultiChainLadder"): S4 generic function and method to extract standardized residuals from a "MultiChainLadder" object.

show signature(object = "MultiChainLadder"): Method for show.

summary signature(object = "MultiChainLadder"): See summary,MultiChainLadder-method.

vcov signature(object = "MultiChainLadder"): Method for function vcov, to extract the variance-covariance matrix of a "MultiChainLadder" object. Note that the result is a list of Bcov, that is the variance-covariance matrix of the vectorized B.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also MultiChainLadder,summary,MultiChainLadder-method and plot,MultiChainLadder,missing-method.
Examples

# example for class "MultiChainLadder"
data(liab)
fit.liab <- MultiChainLadder(Triangles = liab)
fit.liab

names(fit.liab)
fit.liab[[1]]
fit.liab$model
fit.liab@model
do.call("rbind",coef(fit.liab))
vcov(fit.liab)[[1]]
residCov(fit.liab)[[1]]
head(do.call("rbind",rstandard(fit.liab)))

MultiChainLadderFit-class

Class "MultiChainLadderFit", "MCLFit" and "GMCLFit"

Description

"MultiChainLadderFit" is a virtual class for the fitted models in the multivariate chain ladder reserving framework. "MCLFit" is a result from the internal call .FitMCL to store results in model MCL and "GMCLFit" is a result from the internal call .FitGMCL to store results in model GMCL. The two classes "MCLFit" and "GMCLFit" differ only in the presentation of $B_k$ and $\Sigma_{B_k}$, and different methods of $MSE$ and predict will be dispatched according to these classes.

Objects from the Class

"MultiChainLadderFit" is a virtual Class: No objects may be created from it. For "MCLFit" and "GMCLFit", objects can be created by calls of the form new("MCLFit", ...) and new("GMCLFit", ...) respectively.

Slots

Triangles: Object of class "triangles"
models: Object of class "list"
B: Object of class "list"
Bcov: Object of class "list"
ecov: Object of class "list"
fit.method: Object of class "character"
delta: Object of class "numeric"
int: Object of class "NullNum"
restrict.regMat: Object of class "NullList"
Extends

"MCLFit" and "GMCLFit" extends class "MultiChainLadderFit", directly.

Methods

No methods defined with class "MultiChainLadderFit" in the signature.

For "MCLFit", the following methods are defined:

Mse signature(ModelFit = "MCLFit", FullTriangles = "triangles"): Calculate Mse estimations.
predict signature(object = "MCLFit"): Predict ultimate losses and complete the triangles. The output is an object of class "triangles".

For "GMCLFit", the following methods are defined:

Mse signature(ModelFit = "GMCLFit", FullTriangles = "triangles"): Calculate Mse estimations.
predict signature(object = "GMCLFit"): Predict ultimate losses and complete the triangles. The output is an object of class "triangles".

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also Mse.

Examples

showClass("MultiChainLadderFit")

---

MultiChainLadderMse-class

Class "MultiChainLadderMse"

Description

This class is used to define the structure in storing the MSE results.

Objects from the Class

Objects can be created by calls of the form new("MultiChainLadderMse", ...), or as a result of a call to Mse.
Slots

- `mse.ay`: Object of class "matrix"
- `mse.ay.est`: Object of class "matrix"
- `mse.ay.proc`: Object of class "matrix"
- `mse.total`: Object of class "matrix"
- `mse.total.est`: Object of class "matrix"
- `mse.total.proc`: Object of class "matrix"
- `FullTriangles`: Object of class "triangles"

Methods

No methods defined with class "MultiChainLadderMse" in the signature.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See Also `MultiChainLadder` and `Mse`.

Examples

```r
showClass("MultiChainLadderMse")
```

Description

This class stores the summary statistics from a "MultiChainLadder" object. These summary statistics include both model summary and report summary.

Objects from the Class

Objects can be created by calls of the form `new("MultiChainLadderSummary", ...)`, or a call from `summary`.
Slots

- Triangles: Object of class "triangles"
- FullTriangles: Object of class "triangles"
- S.E.Full: Object of class "list"
- S.E.Est.Full: Object of class "list"
- S.E.Proc.Full: Object of class "list"
- Ultimate: Object of class "matrix"
- IBNR: Object of class "matrix"
- S.E.Ult: Object of class "matrix"
- S.E.Est.Ult: Object of class "matrix"
- S.E.Proc.Ult: Object of class "matrix"
- report.summary: Object of class "list"
- coefficients: Object of class "list"
- coefCov: Object of class "list"
- residCov: Object of class "list"
- rstandard: Object of class "matrix"
- fitted.values: Object of class "matrix"
- residCor: Object of class "matrix"
- model.summary: Object of class "matrix"
- portfolio: Object of class "NullChar"

Methods

$ signature(x = "MultiChainLadderSummary"): Method for primitive function ".". It extracts a slot of x with a specified slot name, just as in list.

[[ signature(x = "MultiChainLadderSummary", i = "numeric", j = "missing")]: Method for primitive function "[[". It extracts the i-th slot of a "MultiChainLadder" object, just as in list. i could be a vetor.

[[ signature(x = "MultiChainLadderSummary", i = "character", j = "missing")]: Method for primitive function "[[". It extracts the slots of a "MultiChainLadder" object with names in i, just as in list. i could be a vetor.

names signature(x = "MultiChainLadderSummary"): Method for function names, which returns the slot names of a "MultiChainLadder" object.

show signature(object = "MultiChainLadderSummary"): Method for show.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also summary,MultiChainLadder-method,MultiChainLadder-class
MunichChainLadder

Examples

showClass("MultiChainLadderSummary")

MunichChainLadder  Munich-chain-ladder Model

Description

The Munich-chain-ladder model forecasts ultimate claims based on a cumulative paid and incurred claims triangle. The model assumes that the Mack-chain-ladder model is applicable to the paid and incurred claims triangle, see MackChainLadder.

Usage

MunichChainLadder(Paid, Incurred,
  est.sigmaP = "log-linear", est.sigmaI = "log-linear",
  tailP=FALSE, tailI=FALSE)

Arguments

Paid cumulative paid claims triangle. Assume columns are the development period, use transpose otherwise. A (mxn)-matrix \( P_{ik} \) which is filled for \( k \leq n + 1 - i; i = 1,\ldots,m; m \geq n \)

Incurred cumulative incurred claims triangle. Assume columns are the development period, use transpose otherwise. A (mxn)-matrix \( I_{ik} \) which is filled for \( k \leq n + 1 - i; i = 1,\ldots,m; m \geq n \)

est.sigmaP defines how \( \sigma_{n-1} \) for the Paid triangle is estimated, see est.sigma in MackChainLadder for more details, as est.sigmaP gets passed on to MackChainLadder

est.sigmaI defines how \( \sigma_{n-1} \) for the Incurred triangle is estimated, see est.sigma in MackChainLadder for more details, as est.sigmaI is passed on to MackChainLadder

tailP defines how the tail of the Paid triangle is estimated and is passed on to MackChainLadder, see tail just there.

tailI defines how the tail of the Incurred triangle is estimated and is passed on to MackChainLadder, see tail just there.

Value

MunichChainLadder returns a list with the following elements

call matched call

Paid input paid triangle

Incurred input incurred triangle

MCLPaid Munich-chain-ladder forecasted full triangle on paid data

MCLIncurred Munich-chain-ladder forecasted full triangle on incurred data
MunichChainLadder

MackPaid Mack-chain-ladder output of the paid triangle
MackIncurred Mack-chain-ladder output of the incurred triangle
PaidResiduals paid residuals
IncurredResiduals incurred residuals
QResiduals paid/incurred residuals
QinverseResiduals incurred/paid residuals
lambdaP dependency coefficient between paid chain ladder age-to-age factors and incurred/paid age-to-age factors
lambdaI dependency coefficient between incurred chain ladder ratios and paid/incurred ratios
qinverse.f chain-ladder-link age-to-age factors of the incurred/paid triangle
rhoP.sigma estimated conditional deviation around the paid/incurred age-to-age factors
q.f chain-ladder age-to-age factors of the paid/incurred triangle
rhoI.sigma estimated conditional deviation around the incurred/paid age-to-age factors

Author(s)
Markus Gesmann <markus.gesmann@gmail.com>

References

See Also
See also summary.MunichChainLadder, plot.MunichChainLadder, MackChainLadder

Examples

MCLpaid
MCLincurred
op <- par(mfrow=c(1,2))
plot(MCLpaid)
plot(MCLincurred)
par(op)

# Following the example in Quarg's (2004) paper:
MCL <- MunichChainLadder(MCLpaid, MCLincurred, est.sigmaP=0.1, est.sigmaI=0.1)
MCL
plot(MCL)
# You can access the standard chain ladder (Mack) output via
MCL$MackPaid
MCL$MackIncurred

# Input triangles section 3.3.1
MCL$Paid
MCL$Incurred
# Parameters from section 3.3.2
# Standard chain ladder age-to-age factors
MCL$MackPaid$f
MCL$MackIncurred$f
MCL$MackPaid$sigma
MCL$MackIncurred$sigma
# Check Mack's assumptions graphically
plot(MCL$MackPaid)
plot(MCL$MackIncurred)

MCL$q.f
MCL$rhoP.sigma
MCL$rhoI.sigma

MCL$PaidResiduals
MCL$IncurredResiduals

MCL$QinverseResiduals
MCL$QResiduals

MCL$lambdaP
MCL$lambdaI
# Section 3.3.3 Results
MCL$MCLPaid
MCL$MCLIncurred

---

**Run-off claims triangle**

**Description**
Cumulative claims development triangle

**Format**
A matrix with 9 accident years and 9 development years.

**Source**
*Modelling the claims development result for solvency purposes. Michael Merz, Mario V. Wüthrich. Casualty Actuarial Society E-Forum, Fall 2008.*

**Examples**

```r
 MW2008
 plot(MW2008, lattice=TRUE)
```
MW2014

Run-off claims triangle

Description

Cumulative claims development triangle

Format

A matrix with 17 accident years and 17 development years.

Source


Examples

```r
plot(MW2014, lattice=TRUE)
```

NullNum-class

Class "NullNum", "NullChar" and "NullList"

Description

Virtual class for c("null", "numeric").c("null","character" and c("null","list"

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "NullNum" in the signature.
plot-MultiChainLadder  Methods for Function plot

Description

Methods for function `plot` to produce different diagnostic plots for an object of class "MultiChainLadder".

Usage

```r
S4 method for signature 'MultiChainLadder,missing'
plot(x, y, which.plot=1:4,
 which.triangle=NULL,
 main=NULL,
 portfolio=NULL,
 lowess=TRUE,
 legend.cex=0.75,...)
```

Arguments

- `x` An object of class "MultiChainLadder".
- `y"missing"
- `which.plot` This specifies which type of plot is desired. Its range is 1:5, but defaults to 1:4. "1" is the barplot of observed losses and predicted IBNR stacked and MSE predictions as error bars; "2" is a trajectory plot of the development pattern; "3" is the residual plot of standardized residuals against the fitted values; "4" is the Normal-QQ plot of the standardized residuals. "5" is the "xyplot" of development with confidence intervals for each accident year. Note that "3" and "4" are not available for portfolio.
- `which.triangle` This specifies which triangles are to be plotted. Default value is NULL, where all triangles plus the portfolio result will be plotted.
- `main` It should be a list of titles for each plot. If not supplied, use default titles.
- `portfolio` It specifies which triangles are to be summed as the portfolio, to be passed on to summary.
- `lowess` Logical. If TRUE, smoothing lines will be added on residual plots.
- `legend.cex` plotting parameter to be passes on to `cex` in `legend` if `which.plot=1`.
- `...` optional graphical arguments.

See Also

See also `MultiChainLadder`
Examples

## Not run:
data(liab)
fit.liab <- MultiChainLadder(liab)

# generate diagnostic plots
par(mfcol=c(3,2))
plot(fit.liab,which.plot=1:2)

par(mfrow=c(2,2))
plot(fit.liab,which.plot=3:4)
plot(fit.liab,which.triangle=1,which.plot=5)
graphics.off()

## End(Not run)

plot.BootChainLadder  Plot method for a BootChainLadder object

Description

plot.BootChainLadder, a method to plot the output of BootChainLadder. It is designed to give a quick overview of a BootChainLadder object and to check the model assumptions.

Usage

## S3 method for class 'BootChainLadder'
plot(x, mfrow=c(2,2), title=NULL, log=FALSE, ...)

Arguments

- **x**
  - output from BootChainLadder
- **mfrow**
  - see par
- **title**
  - see title
- **log**
  - logical. If TRUE the y-axes of the 'latest incremental actual vs. simulated' plot will be on a log-scale
- **...**
  - optional arguments. See plot.default for more details.

Details

plot.BootChainLadder shows four graphs, starting with a histogram of the total simulated IBNRs over all origin periods, including a rug plot; a plot of the empirical cumulative distribution of the total IBNRs over all origin periods; a box-whisker plot of simulated ultimate claims costs against origin periods; and a box-whisker plot of simulated incremental claims cost for the latest available calendar period against actual incremental claims of the same period. In the last plot the simulated data should follow the same trend as the actual data, otherwise the original data might have some intrinsic trends which are not reflected in the model.
The box-whisker plot of latest actual incremental claims against simulated claims follows is based on ideas from Barnett and Zehnwirth in: Barnett and Zehnwirth. The need for diagnostic assessment of bootstrap predictive models, Insureware technical report. 2007

Author(s)
Markus Gesmann

See Also
See also `BootChainLadder`

Examples
```r
B <- BootChainLadder(RAA)
plot(B)
plot(B, log=TRUE)
```

plot.clark  
*Plot Clark method residuals*

Description
Function to plot the residuals of the Clark LDF and Cape Cod methods.

Usage
```r
S3 method for class 'clark'
plot(x, ...)
```

Arguments
- `x`  object resulting from a run of the ClarkLDF or ClarkCapeCod functions.
- `...` not used.

Details
If Clark’s model is appropriate for the actual data, then the standardized residuals should appear as independent standard normal random variables. This function creates four plots of standardized residuals on a single page:

1. By origin
2. By age
3. By fitted value
4. Normal Q-Q plot with results of Shapiro-Wilk test
If the model is appropriate then there should not appear to be any trend in the standardized residuals or any systematic differences in the spread about the line $y = 0$. The Shapiro-Wilk p-value shown in the fourth plot gives an indication of how closely the standardized residuals can be considered "draws" from a standard normal random variable.

**Author(s)**

Daniel Murphy

**References**


**See Also**

ClarkLDF, ClarkCapeCod

**Examples**

```r
X <- GenIns
Y <- ClarkLDF(GenIns, maxage=Inf, G="weibull")
plot(Y) # One obvious outlier, shapiro test flunked
X[4,4] <- NA # remove the outlier
Z <- ClarkLDF(GenIns, maxage=Inf, G="weibull")
plot(Z) # Q-Q plot looks good
```

---

**Description**

`plot.MackChainLadder`, a method to plot the output of `MackChainLadder`. It is designed to give a quick overview of a MackChainLadder object and to check Mack's model assumptions.

**Usage**

```r
S3 method for class 'MackChainLadder'
plot(x, mfrow=c(3,2), title=NULL, lattice=FALSE,...)
```

**Arguments**

- `x`: output from MackChainLadder
- `mfrow`: see `par`
- `title`: see `title`
lattice logical. Default is set to FALSE and plots as described in the details section are produced. If lattice=TRUE, the function xyplot of the lattice package is used to plot developments by origin period in different panels, plus Mack's S.E.

... optional arguments. See plot.default for more details.

Details

plot.MunichChainLadder shows six graphs, starting from the top left with a stacked bar-chart of the latest claims position plus IBNR and Mack’s standard error by origin period; next right to it is a plot of the forecasted development patterns for all origin periods (numbered, starting with 1 for the oldest origin period), and 4 residual plots. The residual plots show the standardised residuals against fitted values, origin period, calendar period and development period. All residual plot should show no patterns or directions for Mack’s method to be applicable. Pattern in any direction can be the result of trends and should be further investigated, see Barnett and Zehnwirth. Best estimates for reserves. Proceedings of the CAS, LXXXVI I(167), November 2000. for more details on trends.

Author(s)

Markus Gesmann

See Also

See Also MackChainLadder, residuals.MackChainLadder

Examples

plot(MackChainLadder(RAA))

plot.MunichChainLadder

Plot method for a MunichChainLadder object

Description

plot.MunichChainLadder, a method to plot the output of MunichChainLadder object. It is designed to give a quick overview of a MunichChainLadder object and to check the correlation between the paid and incurred residuals.

Usage

## S3 method for class 'MunichChainLadder'
plot(x, mfrow=c(2,2), title=NULL, ...)

predict.TriangleModel

Arguments

- `x` output from MunichChainLadder
- `mfrow` see `par`
- `title` see `title`
- `...` optional arguments. See `plot.default` for more details.

Details

`plot.MunichChainLadder` shows four plots, starting from the top left with a barchart of forecasted ultimate claims costs by Munich-chain-ladder (MCL) on paid and incurred data by origin period; the barchart next to it compares the ratio of forecasted ultimate claims cost on paid and incurred data based on the Mack-chain-ladder and Munich-chain-ladder methods; the two residual plots at the bottom show the correlation of (incurred/paid)-chain-ladder factors against the paid-chain-ladder factors and the correlation of (paid/incurred)-chain-ladder factors against the incurred-chain-ladder factors.

Note


Author(s)

Markus Gesmann

See Also

See also `MunichChainLadder`

Examples

```r
M <- MunichChainLadder(MCLpaid, MCLincurred)
plot(M)
```

predict.TriangleModel  Prediction of a claims triangle

Description

The function is internally used by `MackChainLadder` to forecast future claims.

Usage

```r
S3 method for class 'TriangleModel'
predict(object,...)
S3 method for class 'ChainLadder'
predict(object,...)
```
Arguments

object  a list with two items: Models, Triangle
Models  list of linear models for each development period
Triangle  input triangle to forecast

Value

FullTriangle  forecasted claims triangle

Author(s)

Markus Gesmann

See Also

See also chainladder, MackChainLadder

Examples

RAA

CL <- chainladder(RAA)
CL
predict(CL)

print.ata  Print Age-to-Age factors

Description

Function to print the results of a call to the ata function.

Usage

## S3 method for class 'ata'
print(x, ...)

Arguments

x  object resulting from a call to the ata function
...

Details

print.ata simply prints summary.ata.
Value
A summary.ata matrix, invisibly.

Author(s)
Daniel Murphy

See Also
ata and summary.ata

Examples
x <- ata(GenIns)

## Print ata factors rounded to 3 decimal places, the summary.ata default
print(x)

## Round to 4 decimal places and print cells corresponding
## to future observations as blanks.
print(summary(x, digits=4), na.print="")

print.clark
Print results of Clark methods

Description
Functions to print the results of the ClarkLDF and ClarkCapeCod methods.

Usage

## S3 method for class 'ClarkLDF'
print(x, Amountdigits=0, LDFdigits=3, CVdigits=3,
      row.names = FALSE, ...)

## S3 method for class 'ClarkCapeCod'
print(x, Amountdigits=0, ELRdigits=3, Gdigits=4, CVdigits=3,
      row.names = FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>object resulting from a run of the ClarkLDF or ClarkCapeCod function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amountdigits</td>
<td>number of digits to display to the right of the decimal point for &quot;amount&quot; columns</td>
</tr>
<tr>
<td>LDFdigits</td>
<td>number of digits to display to the right of the decimal point for the loss development factor (LDF) column</td>
</tr>
</tbody>
</table>
CVdigits  number of digits to display to the right of the decimal point for the coefficient of 
variation (CV) column

ELRdigits  number of digits to display to the right of the decimal point for the expected loss 
ratio (ELR) column

Gdigits  number of digits to display to the right of the decimal point for the "growth 
function factor" column; default of 4 conforms with the table on pp. 67, 68 of 
Clark's paper

row.names  logical (or character vector), indicating whether (or what) row names should be 
printed (same as for print.data.frame)

...  further arguments passed to print

Details
Display the default information in "pretty format" resulting from a run of the "LDF Method" or 
"Cape Cod Method" – a "Development-type" exhibit for Clark’s "LDF Method," a "Bornhuetter-
Ferguson-type" exhibit for Clark’s "Cape Cod Method."

As usual, typing the name of such an object at the console invokes its print method.

Value
data.frames whose columns are the character representation of their respective summary.ClarkLDF 
or summary.ClarkCapeCod data.frames.

Author(s)
Daniel Murphy

References
Clark, David R., "LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Ap-
proach", Casualty Actuarial Society Forum, Fall, 2003

See Also

summary.ClarkLDF and summary.ClarkCapeCod

Examples

X <- GenIns
colnames(X) <- 12*as.numeric(colnames(X))
y <- ClarkCapeCod(X, Premium=10000000+100000*0:9, maxage=240)
summary(y)
print(y)  # (or simply 'y') Same as summary(y) but with "pretty formats"

## Greater growth factors when projecting to infinite maximum age
ClarkCapeCod(X, Premium=10000000+400000*0:9, maxage=Inf)
Description

Sample data to demonstrate how to work with triangles with a higher development period frequency than origin period frequency.

Usage

data(qpaid); data(qincurred)

Format

A matrix with 12 accident years and 45 development quarters of claims costs.

Source

Made up data for testing purpose.

Examples

dim(qpaid)
dim(qincurred)
op=par(mfrow=c(1,2))
ymax <- max(c(qpaid,qincurred),na.rm=TRUE)*1.05
matplot(t(qpaid), type="l", main="Paid development",
       xlab="Dev. quarter", ylab="$", ylim=c(0,ymax))
matplot(t(qincurred), type="l", main="Incurred development",
       xlab="Dev. quarter", ylab="$", ylim=c(0,ymax))
par(op)
## MackChainLadder expects a quadratic matrix so let's expand
## the triangle to a quarterly origin period.
n <- ncol(qpaid)
Paid <- matrix(NA, n, n)
Paid[seq(1,n,4),] <- qpaid
M <- MackChainLadder(Paid)
plot(M)

# We expand the incurred triangle in the same way
Incurred <- matrix(NA, n, n)
Incurred[seq(1,n,4),] <- qincurred

# With the expanded triangles we can apply MunichChainLadder
MunichChainLadder(Paid, Incurred)

# In the same way we can apply BootChainLadder
# We reduce the size of bootstrap replicates R
# from the default of 999 to 99 purely to reduce run time.
BootChainLadder(Paid, R=99)
RAA

*Run off triangle of accumulated claims data*

**Description**

Run-off triangle of Automatic Factultative business in General Liability

**Usage**

data(RAA)

**Format**

A matrix with 10 accident years and 10 development years.

**Source**

*Historical Loss Development*, Reinsurance Association of America (RAA), *1991*, p.96

**References**


**Examples**

```r
RAA
plot(RAA)
plot(RAA, lattice=TRUE)
```

---

**residCov**

*Generic function for residCov and residCor*

**Description**

`residCov` and `residCov` are a generic functions to extract residual covariance and residual correlation from a system of fitted regressions respectively.
residuals.MackChainLadder

Usage

residCov(object,...)
residCor(object,...)

## S4 method for signature 'MultiChainLadder'
residCov(object,...)
## S4 method for signature 'MultiChainLadder'
residCor(object,...)

Arguments

object       An object of class "MultiChainLadder".
...          Currently not used.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also MultiChainLadder.

descriptions.MackChainLadder

Extract residuals of a MackChainLadder model

Description

Extract residuals of a MackChainLadder model by origin-, calendar- and development period.

Usage

## S3 method for class 'MackChainLadder'
residuals(object, ...)

Arguments

object       output of MackChainLadder
...          not in use

Value

The function returns a data.frame of residuals and standardised residuals by origin-, calendar- and development period.

Author(s)

Markus Gesmann
Methods for Function `summary`

Description

Methods for function `summary` to calculate summary statistics from a "MultiChainLadder" object.

Usage

```r
S4 method for signature 'MultiChainLadder'
summary(object, portfolio=NULL,...)
```

Arguments

- `object`: object of class "MultiChainLadder"
- `portfolio`: character strings specifying which triangles to be summed up as portfolio.
- `...`: optional arguments to `summary` methods

Details

`summary` calculations the summary statistics for each triangle and the whole portfolio from `portfolio`. `portfolio` defaults to the sum of all input triangles. It can also be specified as "i+j" format, which means the sum of the i-th and j-th triangle as portfolio. For example, "1+3" means the sum of the first and third triangle as portfolio.

Value

The `summary` function returns an object of class "MultiChainLadderSummary" that has the following slots:

- `Triangles`: input triangles
- `FullTriangles`: predicted triangles
- `S.E.Full`: a list of prediction errors for each cell
S.E.Est.Full a list of estimation errors for each cell
S.E.Proc.Full a list of process errors for each cell
Ultimate predicted ultimate losses for each triangle and portfolio
Latest latest observed losses for each triangle and portfolio
IBNR predicted IBNR for each triangle and portfolio
S.E.Ult a matrix of prediction errors of ultimate losses for each triangle and portfolio
S.E.Est.Ult a matrix of estimation errors of ultimate losses for each triangle and portfolio
S.E.Proc.Ult a matrix of process errors of ultimate losses for each triangle and portfolio
report.summary summary statistics for each triangle and portfolio
coefficients estimated coefficients from systemfit. They are put into the matrix format for GMCL
coeffCov estimated variance-covariance matrix returned by systemfit
residCov estimated residual covariance matrix returned by systemfit
rstandard standardized residuals
fitted.values fitted.values
residCor residual correlation
model.summary summary statistics for the coefficients including p-values
portfolio how portfolio is calculated

Author(s)
Wayne Zhang <actuary_zhang@hotmail.com>

See Also
See Also MultiChainLadder

Examples
data(GenIns)
fit.bbmw=MultiChainLadder(list(GenIns),fit.method="OLS", mse.method="Independence")
summary(fit.bbmw)
**Description**

Summarize the age-to-age factors resulting from a call to the `ata` function.

**Usage**

```r
S3 method for class 'ata'
summary(object, digits=3, ...)
```

**Arguments**

- `object`: object resulting from a call to `ata`
- `digits`: integer indicating the number of decimal places for rounding the factors. The default is 3. NULL indicates that rounding should take place.
- `...`: not used

**Details**

A call to `ata` produces a matrix of age-to-age factors with two attributes – the simple and volume weighted averages. `summary.ata` creates a new matrix with the averages appended as rows at the bottom.

**Value**

A matrix.

**Author(s)**

Dan Murphy

**See Also**

See also `ata` and `print.ata`

**Examples**

```r
y <- ata(RAA)
summary(y, digits=4)
```
Methods for BootChainLadder objects

Description

summary, print, mean, and quantile methods for BootChainLadder objects

Usage

```r
S3 method for class 'BootChainLadder'
summary(object, probs=c(0.75,0.95), ...)

S3 method for class 'BootChainLadder'
print(x, probs=c(0.75,0.95), ...)

S3 method for class 'BootChainLadder'
quantile(x, probs=c(0.75, 0.95), na.rm = FALSE,
 names = TRUE, type = 7,...)

S3 method for class 'BootChainLadder'
mean(x, ...)

S3 method for class 'BootChainLadder'
residuals(object, ...)
```

Arguments

- `x, object` output from `BootChainLadder`
- `probs` numeric vector of probabilities with values in [0,1], see `quantile` for more help
- `na.rm` logical; if true, any NA and NaN's are removed from 'x' before the quantiles are computed, see `quantile` for more help
- `names` logical; if true, the result has a names attribute. Set to FALSE for speedup with many 'probs', see `quantile` for more help
- `type` an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used, see `quantile`
- `...` further arguments passed to or from other methods

Details

Value

summary.BootChainLadder, mean.BootChainLadder, and quantile.BootChainLadder give a list with two elements back:

- **ByOrigin** data frame with summary/mean/quantile statistics by origin period
- **Totals** data frame with total summary/mean/quantile statistics for all origin period

Author(s)

Markus Gesmann

See Also

See also `BootChainLadder`

Examples

```r
B <- BootChainLadder(RAA, R=999, process.distr="gamma")
B
summary(B)
mean(B)
quantile(B, c(0.75, 0.95, 0.99, 0.995))
```

summary.clark  

**Summary methods for Clark objects**

Description

summary methods for ClarkLDF and ClarkCapeCod objects

Usage

```r
S3 method for class 'ClarkLDF'
summary(object, ...)

S3 method for class 'ClarkCapeCod'
summary(object, ...)
```

Arguments

- `object` object resulting from a run of the `ClarkLDF` or `ClarkCapeCod` functions.
- `...` not currently used
**Details**

summary.ClarkLDF returns a data.frame that holds the columns of a typical "Development-type" exhibit.

summary.ClarkCapeCod returns a data.frame that holds the columns of a typical "Bornhuetter-Ferguson-type" exhibit.

**Value**

summary.ClarkLDF and summary.ClarkCapeCod return data.frames whose columns are objects of the appropriate mode (i.e., character for "Origin", otherwise numeric)

**Author(s)**

Dan Murphy

**See Also**

See also `ClarkLDF`

**Examples**

```r
y <- ClarkLDF(RAA)
summary(y)
```

---

**summary.MackChainLadder**

*Summary and print function for Mack-chain-ladder*

---

**Description**

summary and print methods for a MackChainLadder object

**Usage**

```r
S3 method for class 'MackChainLadder'
summary(object, ...)

S3 method for class 'MackChainLadder'
print(x, ...)
```

**Arguments**

- `x`, `object`: object of class "MackChainLadder"
- `...`: optional arguments to print or summary methods
summary.MunichChainLadder

Details

print.MackChainLadder calls summary.MackChainLadder and prints a formatted version of the summary.

Value

summary.MackChainLadder gives a list of two elements back

ByOrigin data frame with Latest (latest actual claims costs), Dev.To.Date (chain-ladder development to date), Ultimate (estimated ultimate claims cost), IBNR (estimated IBNR), Mack.S.E (Mack’s estimation of the standard error of the IBNR), and CV(IBNR) (Coefficient of Variance=Mack.S.E/IBNR)

Totals data frame of totals over all origin periods. The items follow the same naming convention as in ByOrigin above

Author(s)

Markus Gesmann

See Also

See also MackChainLadder, plot.MackChainLadder

Examples

```r
R <- MackChainLadder(RAA)
R
summary(R)
summary(R)$ByOrigin$Ultimate
```

summary.MunichChainLadder

Summary and print function for Munich-chain-ladder

Description

summary and print methods for a MunichChainLadder object

Usage

```r
S3 method for class 'MunichChainLadder'
summary(object, ...)

S3 method for class 'MunichChainLadder'
print(x, ...)
```
Arguments

- `x`, `object`  
  object of class "MunichChainLadder"
- `...`  
  optional arguments to `print` or `summary` methods

Details

`print.MunichChainLadder` calls `summary.MunichChainLadder` and prints a formatted version of the summary.

Value

`summary.MunichChainLadder` gives a list of two elements back

- `ByOrigin`  
  data frame with `Latest Paid` (latest actual paid claims costs), `Latest Incurred` (latest actual incurred claims position), `Latest P/I Ratio` (ratio of latest paid/incurred claims), `Ult. Paid` (estimate ultimate claims cost based on the paid triangle), `Ult. Incurred` (estimate ultimate claims cost based on the incurred triangle), `Ult. P/I Ratio` (ratio of ultimate paid forecast / ultimate incurred forecast)
- `Totals`  
  data frame of totals over all origin periods. The items follow the same naming convention as in `ByOrigin` above

Author(s)

Markus Gesmann

See Also

See also `MunichChainLadder`, `plot.MunichChainLadder`

Examples

```r
M <- MunichChainLadder(MCLpaid, MCLincurred)
M
summary(M)
summary(M)$ByOrigin
```

Description

Print the tables on pages 64, 65, and 68 of Clark’s paper.

Usage

```R
Table64(x)
Table65(x)
Table68(x)
```
Arguments

x an object resulting from ClarkLDF or ClarkCapeCod

Details

These exhibits give some of the details behind the calculations producing the estimates of future values (a.k.a. "Reserves" in Clark's paper). Table65 works for both the "LDF" and the "CapeCod" methods. Table64 is specific to "LDF", Table68 to "CapeCod".

Value

A data.frame.

Author(s)

Daniel Murphy

References


Examples

Table65(ClarkLDF(GenIns, maxage=20))
Table64(ClarkLDF(GenIns, maxage=20))

X <- GenIns
colnames(X) <- 12*as.numeric(colnames(X))
Table65(ClarkCapeCod(X, Premium=100000000+4000000*0:9, maxage=Inf))
Table68(ClarkCapeCod(X, Premium=100000000+4000000*0:9, maxage=Inf))

Description

Functions to ease the work with triangle shaped matrix data. A 'triangle' is a matrix with some generic functions. Triangles are usually stored in a 'long' format in data bases. The function as_triangle can transform a data.frame into a triangle shape.
triangle S3 Methods

Usage

```r
S3 method for class 'matrix'
as.triangle(Triangle, origin = "origin", dev = "dev", value = "value", ...)
S3 method for class 'data.frame'
as.triangle(Triangle, origin = "origin", dev = "dev", value = "value", ...)
S3 method for class 'triangle'
as.data.frame(x, row.names = NULL, optional, lob = NULL, na.rm = FALSE, ...)
S3 method for class 'triangle'
plot(x, type = "b", xlab = "dev. period", ylab = NULL, lattice = FALSE, ...)
```

Arguments

- `Triangle` a triangle
- `origin` name of the origin period, default is "origin".
- `dev` name of the development period, default is "dev".
- `value` name of the value, default is "value".
- `row.names` default is set to NULL an will merge origin and dev. period to create row names.
- `lob` default is NULL. The idea is to use lob (line of business) as an additional column to label a triangle in a long format, see the examples for more details.
- `optional` not used
- `na.rm` logical. Remove missing values?
- `x` a matrix of class 'triangle'
- `xlab` a label for the x axis, defaults to 'dev. period'
- `ylab` a label for the y axis, defaults to NULL
- `lattice` logical. If FALSE the function `matplot` is used to plot the developments of the triangle in one graph, otherwise the `xyplot` function of the lattice package is used, to plot developments of each origin period in a different panel.
- `type` type, see `plot.default`
- `...` arguments to be passed to other methods

Warning

Please note that for the function `as.triangle` the origin and dev. period columns have to be of type numeric or a character which can be converted into numeric.

Also note that when converting from a data.frame to a matrix with `as.triangle`, multiple records with the same `origin` and `dev` will be aggregated.

Author(s)

Markus Gesmann, Dan Murphy
triangles-class

Examples

```r
GenIns
plot(GenIns)
plot(GenIns, lattice=TRUE)
```

```r
Convert long format into triangle
Triangles are usually stored as 'long' tables in data bases
head(GenInsLong)
as.triangle(GenInsLong, origin="accyear", dev="devyear", "incurred claims")

X <- as.data.frame(RAA)
head(X)

Y <- as.data.frame(RAA, lob="General Liability")
head(Y)
```

triangles-class  

S4 Class "triangles"

Description

This is a S4 class that has "list" in the data part. This class is created to facilitate validation and extraction of data.

Objects from the Class

Objects can be created by calls of the form `new("triangles", ...)`, or use `as(...,"triangles")`, where ... is a "list".

Slots

.Data: Object of class "list"

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

```r
Mse signature(ModelFit = "GMCLFit", FullTriangles = "triangles"): See Mse
Mse signature(ModelFit = "MCLFit", FullTriangles = "triangles"): See Mse
```

```r
[signature(x = "triangles", i = "missing", j = "numeric", drop = "logical"): Method for primitive function "[" to subset certain columns. If drop=TRUE, rows composed of all "NA"s are removed. Dimensions are not dropped.
```
triangles-class

[ signature(x = "triangles", i = "missing", j = "numeric", drop = "missing"): Method for primitive function "]" to subset certain columns, where rows composed of all "NA"s are removed. Dimensions are not dropped.

[ signature(x = "triangles", i = "numeric", j = "missing", drop = "logical"): Method for primitive function "]" to subset certain rows. If drop=TRUE, columns composed of all "NA"s are removed. Dimensions are not dropped.

[ signature(x = "triangles", i = "numeric", j = "missing", drop = "missing"): Method for primitive function "]" to subset certain rows, where columns composed of all "NA"s are removed. Dimensions are not dropped.

[ signature(x = "triangles", i = "numeric", j = "numeric", drop = "missing"): Method for primitive function "]" to subset certain rows and columns. Dimensions are not dropped.

[<- signature(x = "triangles", i = "numeric", j = "numeric", value = "list"): Method for primitive function "[<" to replace one cell in each triangle with values specified in value.

coerce signature(from = "list", to = "triangles"): Method to construct a "triangles" object from "list".

dim signature(x = "triangles"): Method to get the dimensions. The return value is a vector of length 3, where the first element is the number of triangles, the second is the number of accident years, and the third is the number of development years.

cbind2 signature(x = "triangles", y="missing"): Method to column bind all triangles using cbind internally.

rbind2 signature(x = "triangles", y="missing"): Method to row bind all triangles using rbind internally.

Author(s)
Wayne Zhang <actuary_zhang@hotmail.com>

See Also
See also MultiChainLadder

Examples
data(auto)

# "coerce"
auto <- as(auto,"triangles")  # transform "list" to be "triangles"

# method for "[")
auto[,4:6,drop=FALSE]  # rows of all NA's not dropped
auto[,4:6]  # drop rows of all NA's

auto[8:10, ,drop=FALSE]  #columns of all NA's not dropped
auto[8:10, ]  #columns of all NA's dropped

auto[1:2,1]
# replacement method
auto[1:2,1] <- list(1,2,3)
auto[1,2]

dim(auto)

cbind2(auto[1:2,1])
rbind2(auto[1:2,1])

tweediereserve  

Tweedie Stochastic Reserving Model

Description

This function implements loss reserving models within the generalized linear model framework in order to generate the full predictive distribution for loss reserves. Besides, it generates also the one year risk view useful to derive the reserve risk capital in a Solvency II framework. Finally, it allows the user to validate the model error while changing different model parameters, as the regression structure and diagnostics on the Tweedie p parameter.

Usage

tweediereserve(triangle, var.power = 1,
    link.power = 0, design.type = c(1, 1, 0),
    rereserving = FALSE, cum = TRUE, exposure = FALSE,
    bootstrap = 1, boot.adj = 0, nsim = 1000,
    proc.err = TRUE, p.optim = FALSE,
    p.check = c(0, seq(1.1, 2.1, by = 0.1), 3),
    progressBar = TRUE, ...)

Arguments

triangle  
An object of class triangle.

var.power  
The index (p) of the power variance function \( V(\mu) = \mu^p \). Default to \( p = 1 \), which is the over-dispersed Poisson model. If NULL, it will be assumed to be in and estimated using the cplm package. See tweedie.

link.power  
The index of power link function. The default link.power = 0 produces a log link. See tweedie.

design.type  
It's a 3 dimension array that specifies the design matrix underlying the GLM. The dimensions represent respectively: origin period, development and calendar period. Accepted values are: 0 (not modelled), 1 (modelled as factor) and 2 (modelled as variable). Default to c(1,1,0), which is the common specification in actuarial literature (origin and development period as factors, calendar period not modelled). If a parameter for the calendar period is specified, a linear regression on the log CY parameter is fitted to estimate future values, thus is recommended to validate them running a plot of the gamma values (see output gamma_y).
rerereserving  Boolean, if TRUE the one year risk view loss reserve distribution is derived. Default to FALSE. Note, the runtime can materially increase if set to TRUE.

cum  Boolean, indicating whether the input triangle is cumulative or incremental along
the development period. If TRUE, then triangle is assumed to be on the cumulative
scale, and it will be converted to incremental losses internally before a GLM is fitted.

exposure  Boolean, if TRUE the exposure defined in the triangle object is specified as
offset in the GLM model specification. Default to FALSE.

bootstrap  Integer, it specifies the type of bootstrap for parameter error. Accepted values
are: 0 (disabled), 1 (parametric), 2 (semi-parametric). Default to 1.

boot.adj  Integer, it specified the methodology when using semi-parametric bootstrapping. Accepted values are: 0 (cycles until all the values of the pseudo-triangle are >= 0), 1 (overwrite negative values to 0.01). Default to 0. Note, runtime can materially increase when set to 0, as it could struggle to find pseudo-triangles >= 0)

nsim  Integer, number of simulations to derive the loss reserve distribution. Default to 1000. Note, high num of simulations could materially increase runtime, in particular if a re-reserving algorithm is used as well.

proc.err  Boolean, if TRUE a process error (coherent with the specified model) is added to
the forecasted distribution. Default to TRUE.

p.optim  Boolean, if TRUE the model estimates the MLE for the Tweedie’s p parameter. Default to FALSE. Recommended to use to validate the Tweedie’s p parameter.

p.check  If p.optim=TRUE, a vector of p values for consideration. The values must all be larger than one (if the response variable has exact zeros, the values must all be between one and two). Default to c(0, seq(1.1, 2.1, by=0.1), 3). As fitting the Tweedie p-value isn’t a straightforward process, please refer to tweedie.profile, p.vec argument.

progressBar  Boolean, if TRUE a progress bar will be shown in the console to give an indication of bootstrap progress.

Value

The output is an object of class "g1m" that has the following components:

call  the matched call.

summary  A data frame containing the predicted loss reserve statistics. The following items are displayed:
  • Latest: Latest paid
  • Det.Reserve: Deterministic reserve, i.e. the MLE GLM estimate of the Reserve
  • Ultimate: Ultimate cost, defined as Latest+Det.Reserve
  • Dev.To.Date: Development to date, defined as Latest/Ultimate

Arguments to be passed onto the function glm or cpglm such as contrasts or control. It is important that offset and weight should not be specified. Otherwise, an error will be reported and the program will quit.
The following items are available if bootstrap>0

• **Expected.Reserve**: The expected reserve, defined as the average of the reserve simulations. Should be roughly as Det.Reserve.

• **Prediction.Error**: The prediction error of the reserve, defined as sqrt of the simulations. Please note that if proc.err=FALSE, this field contains only the parameter error given by the bootstrap.

• **CoV**: Coefficient of Variation, defined as Prediction.Error/Expected.Reserve.

• **Expected Ultimate**: The expected ultimate, defined as Expected.Reserve+Latest.

The following items are available if bootstrap>0 & reserving=TRUE

• **Expected.Reserve_1yr**: The reserve derived as sum of next year payment and the expected value of the re-reserve at the end of the year. It should be similar to both Expected.Reserve and Det.Reserve. If it isn't, it's recommended to change regression structure and parameters.

• **Prediction.Error_1yr**: The prediction error of the prospective Claims Development Result (CDR), as defined by Wüthrich (CDR=R(0)-X-R(1)).

• **Emergence.Pattern**: It’s the emergence pattern defined as Prediction.Error_1yr/Prediction.Error.

**Triangle**: The input triangle.

**FullTriangle**: The completed triangle, where empty cells in the original triangle are filled with model predictions.

**model**: The fitted GLM, a class of glm or cpglm. It is most convenient to work with this component when model fit information is wanted.

**scale**: The dispersion parameter phi

**bias**: The model bias, defined as bias=sqrt(n/d.f)

**GLMReserve**: Deterministic reserve, i.e. the MLE GLM estimate of the Reserve

**gamma_y**: When the calendar year is used, it displays the observed and fitted calendar year (usually called "gamma") factors.

**res.diag**: It’s a data frame for residual diagnostics. It contains:

- unscaled: The GLM Pearson residuals.
- unscaled.biasadj: The GLM Person residuals adjusted by the bias, i.e. unscaled.biasadj=unscaled+bias.
- scaled: The GLM Person scaled residuals, i.e. scaled=unscaled/sqrt(phi).
- scaled.biasadj: The GLM Person scaled residuals adjusted by the bias, i.e. scaled.biasadj=scaled+bias.

- dev: Development year.
- origin: Origin year.
- cy: Calendar year.

[If bootstrap>1]

**distr.res_ult**: The full distribution "Ultimate View"

[If rereserve=TRUE]

**distr.res_1yr**: The full distribution "1yr View"
Warning

Note that the runtime can materially increase for certain parameter setting. See above for more details.

Note

This function was born initially as a fork of the glmReserve by Wayne Zhang. I would like to thank him for his work that permitted me to speed up my coding.

Author(s)

Alessandro Carrato MSc FIA OA <alessandro.carrato@gmail.com>

References


England, Verrall. Predictive distributions of outstanding liabilities in general insurance. A.A.S. 1, II. 221-270. 2006


See Also

See also summary.tweedieReserve.

Examples

```r
Not run:
Verrall’s ODP Model is a Tweedie with p=1, log link and
origin/development periods as factors, thus c(1,1,0)
res1 <- tweedieReserve(MW2008, var.power=1, link.power=0,
 design.type=c(1,1,0), rerereserving=TRUE,
 progressBar=TRUE)

To get directly ultimate view and respective one year view
at selected percentiles
summary(res1)

##To get other interesting statistics
res1$summary

In order to validate the Tweedie parameter 'p', it is interesting to
review its loglikelihood profile. Please note that, given the nature
of our data, it is expected that we may have some fitting issues for
given 'p' parameters, thus any results/errors should be considered
```
# only indicatively. Considering different regression structures is anyway
# recommended. Different 'p' values can be defined via the p.check array
# as input of the function.
# See help(tweedie.profile), p.vec parameter, for further information.
# Note: The parameters rereserving and bootstrap can be set to 0 to speed up
# the process, as they aren't needed.

# Runs a 'p' loglikelihood profile on the parameters
# p=c(0,1,1.2,1.3,1.4,1.5,2,3)
res2 <- tweedieReserve(MW2008, p.optim=TRUE,
  p.check=c(0,1,1.2,1.3,1.4,1.5,2,3),
  design.type=c(1,1,0),
  rereserving=FALSE, bootstrap=0,
  progressBar=FALSE)

# As it is possible to see in this example, the MLE of p (or xi) results
# between 0 and 1, which is not possible as Tweedie models aren't
# defined for 0 < p < 1, thus the Error message.
# But, despite this, we can conclude that overall the value p=1 could be
# reasonable for this dataset, as anyway it seems to be near the MLE.

# In order to consider an inflation parameter across the origin period,
# it may be interesting to change the regression structure to c(0,1,1)
# to get the same estimates of the Arithmetic Separation Method, as
# referred in Gigante/Sigalotti.
res3 <- tweedieReserve(MW2008, var.power=1, link.power=0,
  design.type=c(0,1,1), rereserving=TRUE,
  progressBar=TRUE)

res3

# An assessment on future fitted calendar year values (usually defined
# as "gamma") is recommended
plot(res3$gamma_y)

# Model residuals can be plotted using the res.diag output
plot(scaled.biasadj ~ dev, data=res3$res.diag) # Development year
plot(scaled.biasadj ~ cy, data=res3$res.diag) # Calendar year
plot(scaled.biasadj ~ origin, data=res3$res.diag) # Origin year

# End(Not run)
Usage

```r
S3 method for class 'tweedieReserve'
print(x, ...)
S3 method for class 'tweedieReserve'
summary(object, q = c(0.5, 0.75, 0.9, 0.95, 0.995), ...)
```

Arguments

- `x`: An object of class `tweedieReserve`.
- `object`: An object of class `tweedieReserve`.
- `q`: Array of percentiles to be displayed.
- `...`: Not used

Value

A list with two items

- `Prediction`: a data.frame with ultimate view reserve risk and the one year view reserve risk at the given percentiles.
- `Diagnostic`: Quick diagnostic to show the deterministic reserve vs ultimate view and one year view best estimate. If the model is working properly, then these three values shouldn’t be much different.

Author(s)

Alessandro Carrato MSc FIA OA <alessandro.carrato@gmail.com>

See Also

See also `tweedieReserve`.

Examples

```r
Not run:
tw <- tweedieReserve(MW2008, rereserving = TRUE)
summary(tw)
For comparison
CDR.BootChainLadder(BootChainLadder(MW2008))
End(Not run)
```
UKMotor                  UK motor claims triangle

Description

Triangle of cumulative claims payments for four origin (accident) years over time (development years).

Usage

data("UKMotor")

Format

A matrix with 7 accident years and 7 development years.

Source

http://www.actuaries.org.uk/research-and-resources/documents/claims-reserving-manual-vol2-section-o

References


Examples

data(UKMotor)
plot(UKMotor)
MackChainLadder(UKMotor, est.sigma="Mack")

vcov.clark                  Covariance Matrix of Parameter Estimates – Clark's methods

Description

Function to compute the covariance matrix of the parameter estimates for the ClarkLDF and Clark-CapeCod methods.

Usage

## S3 method for class 'clark'
vcov(object, ...)
**vcov.clark**

**Arguments**

- **object** object resulting from a run of the ClarkLDF or ClarkCapeCod functions.

**Details**

The covariance matrix of the estimated parameters is estimated by the inverse of the Information matrix (see Clark, p. 53). This function uses the "FI" and "sigma2" values returned by ClarkLDF and by ClarkCapeCod and calculates the matrix 
-\( \text{sigma2} \times \text{FI}^{-1} \).

**Author(s)**

Daniel Murphy

**References**


**See Also**

ClarkLDF, ClarkCapeCod

**Examples**

```r
x <- GenIns
colnames(x) <- 12*as.numeric(colnames(x))
Y <- ClarkCapeCod(x, Premium=1000000+400000*0:9, maxage=240)
round(vcov(Y),6) # Compare to matrix on p. 69 of Clark's paper

The estimates of the loglogistic parameters
Y$THETAG

The standard errors of the estimated parameters
sqrt(tail(diag(vcov(Y)), 2))

The parameter risks of the estimated reserves are calculated
according to the formula on p. 54 of Clark's paper. For example, for
the 5th accident year, pre- and post-multiply the covariance matrix
by a matrix consisting of the gradient entries for just that accident year
FVgrad5 <- matrix(Y$FutureValueGradient[, 5], ncol=1)
sqrt(t(FVgrad5) %*% vcov(Y) %*% FVgrad5) # compares to 314,829 in Clark's paper

The estimated reserves for accident year 5:
Y$FutureValue[5] # compares to 2,046,646 in the paper

Recalculate the parameter risk CV for all accident years in total (10.6% in paper):
sqrt(sum(t(Y$FutureValueGradient) %*% vcov(Y) %*% Y$FutureValueGradient)) /
 Y$TotalFutureValue
```
Index

*Topic **aplot**
  plot.BootChainLadder, 57
  plot.clark, 58
  plot.MackChainLadder, 59
  plot.MunichChainLadder, 60
*Topic **array**
  Cumulative and incremental triangles, 23
*Topic **classes**
  MultiChainLadder-class, 46
  MultiChainLadderFit-class, 48
  MultiChainLadderMse-class, 49
  MultiChainLadderSummary-class, 50
  NullNum-class, 55
  triangles-class, 78
*Topic **datasets**
  ABC, 4
  auto, 6
  GenIns, 24
  liab, 31
  M3I55, 32
  MCLPCL, 37
  Mortgage, 38
  MW2008, 54
  MW2014, 55
  qpaid, 65
  RAA, 66
  UKMotor, 86
*Topic **methods**
  getLatestCumulative, 25
  Mse-methods, 38
  plot-MultiChainLadder, 56
  plot.clark, 58
  plot.MackChainLadder, 59
  print.clark, 63
  residCov, 66
  summary-methods, 68
  summary.BootChainLadder, 71
  summary.clark, 72
  summary.MackChainLadder, 73
  summary.MunichChainLadder, 74
  Table65, 75
  triangle S3 Methods, 76
*Topic **models**
  BootChainLadder, 7
  CDR, 9
  chainladder, 10
  ClarkCapeCod, 13
  ClarkLDF, 17
  CLFMDelta, 20
  coef.ChainLadder, 22
  glmReserve, 26
  Join2Fits, 29
  JoinFitMse, 30
  LRFunction, 31
  MackChainLadder, 33
  Mse-methods, 38
  MultiChainLadder, 40
  MunichChainLadder, 52
  predict.TriangleModel, 61
  residuals.MackChainLadder, 67
  tweedieReserve, 80
*Topic **package**
  ChainLadder-package, 3
*Topic **print**
  print.ata, 62
  print.clark, 63
  summary.BootChainLadder, 71
  summary.MackChainLadder, 73
  summary.MunichChainLadder, 74
  tweedieReserve methods, 84
*Topic **summary**
  summary.ata, 70
  summary.clark, 72
  [,triangles,missing,numeric,logical-method (triangles-class), 78
  [,triangles,missing,numeric,missing-method (triangles-class), 78

88
INDEX

[,triangles,numeric,missing,logical-method
(triangles-class), 78
c,triangles,numeric,missing,missing-method
(triangles-class), 78
c,triangles,numeric,numeric,missing-method
(triangles-class), 78
c,triangles,numeric,numeric,numeric-method
(triangles-class), 78
<-,triangles,numeric,numeric,list-method
(triangles-class), 78
[,MultiChainLadder,character,missing-method
(MultiChainLadder-class), 46
[,MultiChainLadder,numeric,missing-method
(MultiChainLadder-class), 46
[,MultiChainLadderSummary,character,missing-method
(MultiChainLadderSummary-class), 50
[,MultiChainLadderSummary,numeric,missing-method
(MultiChainLadderSummary-class), 50
$,MultiChainLadder-method
(MultiChainLadder-class), 46
$,MultiChainLadderSummary-method
(MultiChainLadderSummary-class), 50

ABC, 4
as.data.frame.triangle(triangle S3 Methods), 76
as.triangle, 23, 26
as.triangle(triangle S3 Methods), 76
ata, 5, 12, 62, 63, 70
auto, 6

BootChainLadder, 7, 9, 10, 57, 58, 71, 72
cbind2,triangles,missing-method
(triangles-class), 78

CDR, 9
CDR.BootChainLadder, 8
CDR.MackChainLadder, 35
ChainLadder (ChainLadder-package), 3
chainLadder, 5, 10, 21–23, 35, 62
ChainLadder-package, 3
ClarkCapeCod, 13, 20, 28, 59, 72, 87
ClarkLDF, 16, 17, 28, 59, 72, 73, 87
CLFMdelta, 20
c,coef,MultiChainLadder-method
(MultiChainLadder-class), 46
c,coef.ChainLadder, 22
c,coef,GMCLF1-method
(MultichainLadder-class), 46
c,coef,MCLFit-method
(MultichainLadder-class), 48
c,coef,mclfit-method
(MultichainLadder-class), 48
c,coef,mclincurred-method
(MultichainLadder-class), 37
c,coef,mclpaid-method
(MultichainLadder-class), 37
c,mean,BootChainLadder
(summary.BootChainLadder), 71

M3IRS, 32
MackChainLadder, 9, 10, 12, 22, 28, 33, 44,
52, 53, 59–62, 67, 68, 74
matplot, 77
MCLFit-class
(MultichainLadderFit-class), 48
MCLincurred(MCLpaid), 37
MCLpaid, 37
Mse, 49, 50, 78
Mse(Mse-methods), 38
Mse,GMCLF1-method
(Mse-methods), 38
Mse,MCLFit-method
(Mse-methods), 38
Mse-methods, 38

mse,49,50,78
mean.bootchainladder
(summary.bootchainladder), 71
mse(mse-methods), 38
mse,GMCLF1-method
(mse-methods), 38
mse,MCLFit-method
(mse-methods), 38
mse-methods, 38
MultiChainLadder, 30, 40, 44, 47, 50, 56, 67, 69, 79
MultiChainLadder-class, 46
MultiChainLadder2 (MultiChainLadder), 40
MultiChainLadderFit, 46, 49
MultiChainLadderFit-class, 48
MultiChainLadderMSe, 46
MultiChainLadderMSe-class, 49
MultiChainLadderSummary-class, 50
MunichChainLadder, 44, 52, 60, 61, 75
MW2008, 54
MW2014, 55

names, MultiChainLadder-method
  (MultiChainLadder-class), 46
names, MultiChainLadderSummary-method
  (MultiChainLadderSummary-class), 50
NullChar-class (NullNum-class), 55
NullList-class (NullNum-class), 55
NullNum-class, 55

par, 57, 59, 61
plot, MultiChainLadder, missing-method
  (plot-MultiChainLadder), 56
plot-methods (plot-MultiChainLadder), 56
plot-MultiChainLadder, 56
plot.BootChainLadder, 8, 57
plot.clark, 15, 18, 58
plot.default, 57, 60, 61, 77
plot.MackChainLadder, 35, 59, 74
plot.MunichChainLadder, 53, 60, 75
plot.triangle (triangle S3 Methods), 76
predict, GMCLFit-method
  (MultiChainLadderFit-class), 48
predict, MCLFit-method
  (MultiChainLadderFit-class), 48
predict.ChainLadder, 12
predict.ChainLadder
  (predict.TriangleModel), 61
predict.TriangleModel, 61
print.ata, 5, 62, 70
print.BootChainLadder
  (summary.BootChainLadder), 71
print.clark, 63
print.ClarKcapeCod (print.clark), 63
print.ClarKlDF (print.clark), 63
print.data.frame, 64
print.MackChainLadder
  (summary.MackChainLadder), 73
print.MunichChainLadder
  (summary.MunichChainLadder), 74
print.tweedieReserve (tweedieReserve
  methods), 84
qincurred (qpaid), 65
qpaid, 7, 11, 21, 33, 35, 65
quantile, 71
quantile.BootChainLadder
  (summary.BootChainLadder), 71

RAA, 66
rbind2, triangles, missing-method
  (triangles-class), 78
resid, MultiChainLadder-method
  (MultiChainLadder-class), 46
residCor (residCov), 66
residCor-MultiChainLadder-method
  (residCov), 66
residCov-methods (residCov), 66
residCov, 66
residCov, MultiChainLadder-method
  (residCov), 66
residCov-methods (residCov), 66
residuals, MultiChainLadder-method
  (MultiChainLadder-class), 46
residuals.BootChainLadder
  (summary.BootChainLadder), 71
residuals.MackChainLadder, 35, 60, 67
rstandard, MultiChainLadder-method
  (MultiChainLadder-class), 46
show, MultiChainLadder-method
  (MultiChainLadder-class), 46
show, MultiChainLadderSummary-method
  (MultiChainLadderSummary-class), 50
summary, MultiChainLadder-method
  (summary-methods), 68
summary-methods, 68
summary.ata, 5, 62, 63, 70
summary.BootChainLadder, 8, 71
summary.clark, 72
summary.ClarKcapeCod, 64
summary.ClarKcapeCod (summary.clark), 72
summary.ClarKlDF, 64
summary.ClarKlDF (summary.clark), 72
summary.MackChainLadder, 35, 73
summary.MunichChainLadder, 53, 74
summary.tweedieReserve, 83
summary.tweedieReserve (tweedieReserve methods), 84
systemfit, 42
Table64 (Table65), 75
Table65, 75
Table68 (Table65), 75
title, 57, 59, 61
triangle, 26, 80, 81
triangle (triangle S3 Methods), 76
triangle S3 Methods, 76
triangles, 44
triangles-class, 78
tweedie, 26–28, 80
tweedie.profile, 81
tweedieReserve, 80, 84, 85
tweedieReserve methods, 84

UKMotor, 86

vcov, MultiChainLadder-method
(MultiChainLadder-class), 46
vcov.clark, 86
vector, 78

xyplot, 60, 77